4,682 research outputs found

    Topological first-order solitons in a gauged CP(2)CP(2) model with the Maxwell-Chern-Simons action

    Full text link
    We verify the existence of radially symmetric first-order solitons in a gauged CP(2)CP(2) scenario in which the dynamics of the Abelian gauge field is controlled by the Maxwell-Chern-Simons action. We implement the standard Bogomol'nyi-Prasad-Sommerfield (BPS) formalism, from which we obtain a well-defined lower bound for the corresponding energy (i.e. the Bogomol'nyi bound) and the first-order equations saturating it. We solve these first-order equations numerically by means of the finite-difference scheme, therefore obtaining regular solutions of the effective model, their energy being quantized according the winding number rotulating the final configurations, as expected. We depict the numerical solutions, whilst commenting on the main properties they engender.Comment: 8 pages, 9 figure

    Comparison of flipped learning and traditional lecture method for teaching digestive system diseases in undergraduate medicine: A prospective non-randomized controlled trial

    Get PDF
    Introduction: This study examined the effects of a large-scale flipped learning (FL) approach in an undergraduate course of Digestive System Diseases. Methods: This prospective non-randomized trial recruited 404 students over three academic years. In 2016, the course was taught entirely in a Traditional Lecture (TL) style, in 2017 half of the course (Medical topics) was replaced by FL while the remaining half (Surgical topics) was taught by TL and in 2018, the whole course was taught entirely by FL. Academic performance, class attendance and student’s satisfaction surveys were compared between cohorts. Results: Test scores were higher in the FL module (Medical) than in the TL module (Surgical) in the 2017 cohort but were not different when both components were taught entirely by TL (2016) or by FL (2018). Also, FL increased the probability of reaching superior grades (scores >7.0) and improved class attendance and students’ satisfaction. Conclusion: The holistic FL model is more effective for teaching undergraduate clinical gastroenterology compared to traditional teaching methods and has a positive impact on classroom attendances

    A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners

    Full text link
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT-PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators

    Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV

    Get PDF
    Transverse momentum spectra of π±\pi^{\pm}, pp and pˉ\bar{p} up to 12 GeV/c at mid-rapidity in centrality selected Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV are presented. In central Au+Au collisions, both π±\pi^{\pm} and p(pˉ)p(\bar{p}) show significant suppression with respect to binary scaling at pT>p_T > 4 GeV/c. Protons and anti-protons are less suppressed than π±\pi^{\pm}, in the range 1.5 <pT<< p_{T} <6 GeV/c. The π/π+\pi^-/\pi^+ and pˉ/p\bar{p}/p ratios show at most a weak pTp_T dependence and no significant centrality dependence. The p/πp/\pi ratios in central Au+Au collisions approach the values in p+p and d+Au collisions at pT>p_T > 5 GeV/c. The results at high pTp_T indicate that the partonic sources of π±\pi^{\pm}, pp and pˉ\bar{p} have similar energy loss when traversing the nuclear medium.Comment: 6 pages, 4 figure

    Measurement of Leptonic Asymmetries and Top Quark Polarization in ttbar Production

    Get PDF
    We present measurements of lepton (l) angular distributions in ttbar -> W+ b W- b -> l+ nu b l- nubar bbar decays produced in ppbar collisions at a center-of-mass energy of sqrt(s)=1.96TeV, where l is an electron or muon. Using data corresponding to an integrated luminosity of 5.4fb^-1, collected with the D0 detector at the Fermilab Collider, we find that the angular distributions of l- relative to anti-protons and l+ relative to protons are in agreement with each other. Combining the two distributions and correcting for detector acceptance we obtain the forward-backward asymmetry A^l_FB = (5.8 +- 5.1(stat) +- 1.3(syst))%, compared to the standard model prediction of A^l_FB (predicted) = (4.7 +- 0.1)%. This result is further combined with the measurement based on the analysis of the l+jets final state to obtain A^l_FB = (11.8 +- 3.2)%. Furthermore, we present a first study of the top-quark polarization.Comment: submitted versio
    corecore