394 research outputs found

    A Second Cell Wall Acid Invertase Gene in Arabidopsis thaliana

    Full text link

    The Morphological Content of Ten EDisCS Clusters at 0.5 < z < 0.8

    Get PDF
    We describe Hubble Space Telescope (HST) imaging of 10 of the 20 ESO Distant Cluster Survey (EDisCS) fields. Each ~40 square arcminute field was imaged in the F814W filter with the Advanced Camera for Surveys Wide Field Camera. Based on these data, we present visual morphological classifications for the ~920 sources per field that are brighter than I_auto=23 mag. We use these classifications to quantify the morphological content of 10 intermediate-redshift (0.5 < z < 0.8) galaxy clusters within the HST survey region. The EDisCS results, combined with previously published data from seven higher redshift clusters, show no statistically significant evidence for evolution in the mean fractions of elliptical, S0, and late-type (Sp+Irr) galaxies in clusters over the redshift range 0.5 < z < 1.2. In contrast, existing studies of lower redshift clusters have revealed a factor of ~2 increase in the typical S0 fraction between z=0.4 and z=0, accompanied by a commensurate decrease in the Sp+Irr fraction and no evolution in the elliptical fraction. The EDisCS clusters demonstrate that cluster morphological fractions plateau beyond z ~ 0.4. They also exhibit a mild correlation between morphological content and cluster velocity dispersion, highlighting the importance of careful sample selection in evaluating evolution. We discuss these findings in the context of a recently proposed scenario in which the fractions of passive (E,S0) and star-forming (Sp,Irr) galaxies are determined primarily by the growth history of clusters.Comment: 18 pages, 7 figures; To be published in ApJ; minor changes made to table label

    Outer-Disk Populations in NGC 7793: Evidence for Stellar Radial Migration

    Get PDF
    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280" (~5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars of NGC 7793 extend significantly farther than the underlying HI disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.Comment: 8 pages, 6 figure. Accepted for publication in Ap

    The Panchromatic Hubble Andromeda Treasury

    Get PDF
    The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31's star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31's disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)Comment: 48 pages including 22 pages of figures. Accepted to the Astrophysical Journal Supplements. Some figures slightly degraded to reduce submission siz

    Discovery of Precursor LBV Outbursts in Two Recent Optical Transients: The Fitfully Variable Missing Links UGC 2773-OT and SN 2009ip

    Full text link
    We present progenitor-star detections, light curves, and optical spectra of SN2009ip and the 2009 optical transient in UGC2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were LBVs. Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of eta Carinae and SN1954J (V12 in NGC2403), with intermediate progenitor luminosities. HST detections a decade before discovery indicate that the SN2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80 Msun and \ga20 Msun, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km/s, plus faster material up to 5000 km/s, resembling the slow Homunculus and fast blast wave of eta Carinae. U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [CaII] emission and an IR excess indicative of dust, similar to SN2008S and N300-OT. [CaII] emission is probably tied to a dusty pre-outburst environment, and not the outburst mechanism. SN2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and SN2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBVs.Comment: 18 pages, 13 Figures, accepted AJ. added significant material while revising after referee repor

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    The Nature of Starbursts: I. The Star Formation Histories of Eighteen Nearby Starburst Dwarf Galaxies

    Full text link
    We use archival HST observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper we present the observations, color-magnitude diagrams, and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only currently bursting galaxies but also "fossil" bursts increasing the sample size of starburst galaxies in the nearby (D<8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid "self-quenching" of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find the strength of the H{\alpha} emission usually correlates with the CMD based SFR during the last 4-10 Myr. However, in four cases, the H{\alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{\alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.Comment: 53 pages, 11 figure

    The Star Formation History and Dust Content in the Far Outer Disc of M31

    Full text link
    We present a detailed analysis of two fields located 26 kpc (~5 scalelengths) from the centre of M31. One field samples the major axis populations--the Outer Disc field--while the other is offset by ~18' and samples the Warp in the stellar disc. The CMDs based on HST/ACS imaging reach old main-sequence turn-offs (~12.5 Gyr). We apply the CMD-fitting technique to the Warp field to reconstruct the star formation history (SFH). We find that after undergoing roughly constant SF until about 4.5 Gyr ago, there was a rapid decline in activity and then a ~1.5 Gyr lull, followed by a strong burst lasting 1.5 Gyr and responsible for 25% of the total stellar mass in this field. This burst appears to be accompanied by a decline in metallicity which could be a signature of the inflow of metal-poor gas. The onset of the burst (~3 Gyr ago) corresponds to the last close passage of M31 and M33 as predicted by detailed N-body modelling, and may have been triggered by this event. We reprocess the deep M33 outer disc field data of Barker et al. (2011) in order to compare consistently-derived SFHs. This reveals a similar duration burst that is exactly coeval with that seen in the M31 Warp field, lending further support to the interaction hypothesis. The complex SFHs and the smoothly-varying age-metallicity relations suggest that the stellar populations observed in the far outer discs of both galaxies have largely formed in situ rather than migrated from smaller galactocentric radii. The strong differential reddening affecting the CMD of the Outer Disc field prevents derivation of the SFH. Instead, we quantify this reddening and find that the fine-scale distribution of dust precisely follows that of the HI gas. This indicates that the outer HI disc of M31 contains a substantial amount of dust and therefore suggests significant metal enrichment in these parts, consistent with inferences from our CMD analysis.Comment: Abstract shortened. 17 pages, 12 figures (+ 6 pages & 5 figures in Appendix). MNRAS, in pres
    corecore