We describe Hubble Space Telescope (HST) imaging of 10 of the 20 ESO Distant
Cluster Survey (EDisCS) fields. Each ~40 square arcminute field was imaged in
the F814W filter with the Advanced Camera for Surveys Wide Field Camera. Based
on these data, we present visual morphological classifications for the ~920
sources per field that are brighter than I_auto=23 mag. We use these
classifications to quantify the morphological content of 10
intermediate-redshift (0.5 < z < 0.8) galaxy clusters within the HST survey
region. The EDisCS results, combined with previously published data from seven
higher redshift clusters, show no statistically significant evidence for
evolution in the mean fractions of elliptical, S0, and late-type (Sp+Irr)
galaxies in clusters over the redshift range 0.5 < z < 1.2. In contrast,
existing studies of lower redshift clusters have revealed a factor of ~2
increase in the typical S0 fraction between z=0.4 and z=0, accompanied by a
commensurate decrease in the Sp+Irr fraction and no evolution in the elliptical
fraction. The EDisCS clusters demonstrate that cluster morphological fractions
plateau beyond z ~ 0.4. They also exhibit a mild correlation between
morphological content and cluster velocity dispersion, highlighting the
importance of careful sample selection in evaluating evolution. We discuss
these findings in the context of a recently proposed scenario in which the
fractions of passive (E,S0) and star-forming (Sp,Irr) galaxies are determined
primarily by the growth history of clusters.Comment: 18 pages, 7 figures; To be published in ApJ; minor changes made to
table label