46 research outputs found

    Antibiotic-Induced Anomalous Statistics of Collective Bacterial Swarming

    Get PDF
    Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress

    A sensitive soil biological indicator to changes in land-use in regions with Mediterranean climate

    Get PDF
    The demand for reliable indicators to quantify soil health has increased recently. We propose and test the use of soil microbial functional diversity as an indicator of multifunctional performance in agriculturally important areas. Agricultural fields in the Mediterranean and semiarid regions of Israel were selected as test sites and measured in Spring and Autumn seasons. Measurements included microbial parameters, basic soil abiotic properties and biological responses to agricultural management relative to measures of a natural ecosystem. Using a canonical correlation analysis we found that soil moisture was the most important basic soil property with different responses in Spring and Autumn. In Spring, it had a strongly negative relation with microbial biomass (MB), community level physiological profiling (CLPP) and the Shannon-Weaver index H', while in Autumn it had a strong relation with CLPP. We further show a significant interaction between CLPP and climate for land-use type "orchards". CLPP measured in the autumn season was thus identified as a useful and rapid biological soil health indicator, recommended for application in semiarid and Mediterranean agricultural regions. Apart from obtaining a better understanding of CLPP as the soil indicator, the study concludes that CLPP is well suited to differentiate between soils in different climates, seasons and land use types. The study shows a promising direction for further research on characterizing soil health under a larger variety of conditions.</p

    Ashkenazi Jewish Centenarians Do Not Demonstrate Enrichment in Mitochondrial Haplogroup J

    Get PDF
    BACKGROUND: Association of mitochondrial haplogroup J with longevity has been reported in several population subgroups. While studies from northern Italy and Finland, have described a higher frequency of haplogroup J among centenarians in comparison to non-centenarian, several other studies could not replicate these results and suggested various explanations for the discrepancy. METHODOLOGY/PRINCIPAL FINDINGS: We have evaluated haplogroup frequencies among Ashkenazi Jewish centenarians using two different sets of matched controls. No difference was observed in the haplogroup J frequencies between the centenarians or either matched control group, despite adequate statistical power to detect such a difference. Furthermore, the lack of association was robust to population substructure in the Ashkenazi Jewish population. Given this discrepancy with the previous reported associations in the northern Italian and the Finnish populations, we conducted re-analysis of these previously published data, which supported one of several possible explanations: i) inadequate matching of cases and controls; ii) inadequate adjustment for multiple comparison testing; iii) cryptic population stratification. CONCLUSIONS/SIGNIFICANCE: There does not exist a universal association of mitochondrial haplogroup J with longevity across all population groups. Reported associations in specialized populations may reflect genetic or other interactions specific to those populations or else cryptic confounding influences, such as inadequate matching attributable to population substructure, which are of general relevance to all studies of the possible association of mitochondrial DNA haplogroups with common complex phenotypes

    Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions

    Get PDF
    Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots

    Implications of Unconnected Micro, Molecular, and Molar Level Research in Psychology: The Case of Executive Functions, Self-Regulation, and External Regulation

    Get PDF
    The proliferation of research production in Psychology as a science has been increasing exponentially. This situation leads to the necessity of organizing the research production into different levels of analysis that make it possible to delimit each research domain. The objective of this analysis is to clearly distinguish the different levels of research: micro-analysis, molecular, and molar. Each level is presented, along with an analysis of its benefits and limitations. Next, this analysis is applied to the topics of Executive Functions, Self-Regulation, and External Regulation. Conclusions, limitations, and implications for future research are offered, with a view toward a better connection of research production across the different levels, and an allusion to ethical considerationsThis study was supported by R&D Project EDU2011-24805, PGC2018-094672-B-I00 (Ministry of Science and Education, Spain), and UAL18-SEJ-DO31-A-FEDER (University of Almería), and the European Social Fund

    Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

    Get PDF
    The relevance of biological materials and processes to computing—aliasbioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing. Computer scientists, however, have a variety of problems to which they seek solutions, while microbiologists are having new insights into the problems bacteria are solving and how they are solving them. Here, we envisage that bacteria might be used for new sorts of computing. These could be based on the capacity of bacteria to grow, move and adapt to a myriad different fickle environments both as individuals and as populations of bacteria plus bacteriophage. New principles might be based on the way that bacteria explore phenotype space via hyperstructure dynamics and the fundamental nature of the cell cycle. This computing might even extend to developing a high level language appropriate to using populations of bacteria and bacteriophage. Here, we offer a speculative tour of what we term bactoputing, namely the use of the natural behaviour of bacteria for calculating

    Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production

    Get PDF
    [EN] World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agricultureFita, A.; Rodríguez Burruezo, A.; Boscaiu Neagu, MT.; Prohens Tomás, J.; Vicente Meana, Ó. (2015). Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Frontiers in Plant Science. 6(978):1-14. doi:10.3389/fpls.2015.00978S114697

    Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories

    No full text
    The commonly used analytic method for assessing total petroleum hydrocarbons (TPH) in soil, EPA method 418.1, is usually based on extraction with 1,1,2-trichlorotrifluoroethane (Freon 113) and FTIR spectroscopy of the extracted solvent. This method is widely used for initial site investigation, due to the relative low price per sample. It is known that the extraction efficiency varies depending on the extracting solvent and other sample properties. This study’s main goal was to evaluate reflectance spectroscopy as a tool for TPH assessment, as compared with three commercial certified laboratories using traditional methods. Large variations were found between the results of the three commercial laboratories, both internally (average deviation up to 20%), and between laboratories (average deviation up to 103%). Reflectance spectroscopy method was found be as good as the commercial laboratories in terms of accuracy and could be a viable field-screening tool that is rapid, environmental friendly, and cost effective
    corecore