13 research outputs found
Recommended from our members
New Associations between Drug-Induced Adverse Events in Animal Models and Humans Reveal Novel Candidate Safety Targets.
To improve our ability to extrapolate preclinical toxicity to humans, there is a need to understand and quantify the concordance of adverse events (AEs) between animal models and clinical studies. In the present work, we discovered 3011 statistically significant associations between preclinical and clinical AEs caused by drugs reported in the PharmaPendium database of which 2952 were new associations between toxicities encoded by different Medical Dictionary for Regulatory Activities terms across species. To find plausible and testable candidate off-target drug activities for the derived associations, we investigated the genetic overlap between the genes linked to both a preclinical and a clinical AE and the protein targets found to interact with one or more drugs causing both AEs. We discuss three associations from the analysis in more detail for which novel candidate off-target drug activities could be identified, namely, the association of preclinical mutagenicity readouts with clinical teratospermia and ovarian failure, the association of preclinical reflexes abnormal with clinical poor-quality sleep, and the association of preclinical psychomotor hyperactivity with clinical drug withdrawal syndrome. Our analysis successfully identified a total of 77% of known safety targets currently tested in in vitro screening panels plus an additional 431 genes which were proposed for investigation as future safety targets for different clinical toxicities. This work provides new translational toxicity relationships beyond AE term-matching, the results of which can be used for risk profiling of future new chemical entities for clinical studies and for the development of future in vitro safety panels.This work was supported as part of the PhD project of K.A.G funded by the European Research Council and AstraZeneca Early Oncology TD
DockStream: a docking wrapper to enhance de novo molecular design
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
A História da Alimentação: balizas historiográficas
Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domÃnio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crÃtico da historiografia brasileira sobre o tema
De Novo Design with Deep Generative Models Based on 3D Similarity Scoring
We have demonstrated the utility of a 3D shape and
pharmacophore similarity scoring component in molecular design with a deep
generative model trained with reinforcement learning. Using Dopamine receptor
type 2 (DRD2) as an example and its antagonist haloperidol 1 as a
starting point in a ligand based design context, we have shown in a
retrospective study that a 3D similarity enabled generative model can discover
new leads in the absence of any other information. It can be efficiently used for scaffold
hopping and generation of novel series. 3D similarity based models were
compared against 2D QSAR based, indicating a significant degree of
orthogonality of the generated outputs and with the former having a more
diverse output. In addition, when the two scoring components are combined
together for training of the generative model, it results in more efficient
exploration of desirable chemical space compared to the individual components. </p
Recommended from our members
Prospectively Validated Proteochemometric Models for the Prediction of Small-Molecule Binding to Bromodomain Proteins.
The bromodomain-containing proteins are a ligandable family of epigenetic readers, which play important roles in oncological, cardiovascular, and inflammatory diseases. Achieving selective inhibition of specific bromodomains is challenging, due to the limited understanding of compound and target selectivity features. In this study we build and benchmark proteochemometric (PCM) classification models on bioactivity data for 15,350 data points across 31 bromodomains, using both compound fingerprints and binding site protein descriptors as input variables, achieving a maximum performance as measured by the Matthew's Correlation Coefficient (MCC) of 0.83 on the external test set. We also find that histone peptide binding data can be used as a target descriptor to build a high performing PCM model (MCC 0.80), showing the transferability of peptide interaction information to modeling small-molecule bioactivity. 1,139 compounds were selected for prospective experimental testing by performing a virtual screen using model predictions and implementing conformal prediction, which resulted in 319 correctly predicted compound-target pair actives and the correct prediction for certain selectivity profile combinations of the four bromodomains tested against. We identify that conformal prediction can be used to fine-tune the balance between hit retrieval and hit structural diversity in a virtual screening setting. PCM can be applied to future virtual screening and compound design, including off-target prediction for bromodomains
Uncertainty quantification in drug design
Machine learning and artificial intelligence are increasingly being applied to the drug-design process as a result of the development of novel algorithms, growing access, the falling cost of computation and the development of novel technologies for generating chemically and biologically relevant data. There has been recent progress in fields such as molecular de novo generation, synthetic route prediction and, to some extent, property predictions. Despite this, most research in these fields has focused on improving the accuracy of the technologies, rather than on quantifying the uncertainty in the predictions. Uncertainty quantification will become a key component in autonomous decision making and will be crucial for integrating machine learning and chemistry automation to create an autonomous design–make–test–analyse cycle. This review covers the empirical, frequentist and Bayesian approaches to uncertainty quantification, and outlines how they can be used for drug design. We also outline the impact of uncertainty quantification on decision making
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream
Validity of remote live stream video evaluation of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy.
Conducting functional assessments remotely can help alleviate the burden of in-person assessment on patients with Duchenne muscular dystrophy and their caregivers. The objective of this study was to evaluate whether scores from remote functional assessment of patients with Duchenne muscular dystrophy correspond to in-person scores on the same functional assessments. Remote live stream versus in-person scores on the North Star Ambulatory Assessment (including time [seconds] to complete the 10-meter walk/run and time to rise from the floor [supine to stand]) were assessed using statistical analyses, including intraclass correlation coefficient, and Pearson, Spearman, and Bland-Altman analyses. The remote and in-clinic assessments had to occur within 2 weeks of one another to be considered for this analysis. This analysis included patients with Duchenne muscular dystrophy, aged 4 to 7 years. Participants in this analysis received delandistrogene moxeparvovec (as part of SRP-9001-101 [Study 101; NCT03375164] or SRP-9001-102 [Study 102; NCT03769116]) or were randomized to receive placebo (in Part 1 of Study 102). This study evaluates score reproducibility between live stream remote scoring versus in-person functional assessments as determined by intraclass correlation coefficient, and Pearson, Spearman, and Bland-Altman analyses. The results showed that scores from remote functional assessment of patients with Duchenne muscular dystrophy strongly correlated with those obtained in person. These findings demonstrate congruence between live stream remote and in-person functional assessment and suggest that remote assessment has the potential to reduce the burden on a family by supplementing in-clinic visits