45 research outputs found

    Blending Geospatial Technology and Traditional Ecological Knowledge to Enhance Restoration Decision-Support Processes in Coastal Louisiana

    Get PDF
    More informed coastal restoration decisions have become increasingly important given limited resources available for restoration projects and the increasing magnitude of marsh degradation and loss across the Gulf Coast. This research investigated the feasibility and benefits of integrating geospatial technology with the traditional ecological knowledge (TEK) of an indigenous Louisiana coastal population to assess the impacts of current and historical ecosystem change on community viability. The primary goal was to provide coastal resource managers with a decision-support tool that allows for a more comprehensive method of assessing localized ecological change in the Gulf Coast region, which can also benefit human community sustainability. Using remote sensing (RS) and geographic information systems (GIS) mapping products, integrated with a coastal community’s TEK to achieve this goal, the research team determined a method for producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal population based on information derived from RS imagery prioritized with TEK. This study also demonstrates how such an approach can engage affected community residents who are interested in determining and addressing the causes and mitigating the decline of marsh habitat. Historical image data sets of the study area were acquired to understand evolution of land change to current conditions and project future vulnerability. Image-processing procedures were developed and applied to produce maps that detail land change in the study area at time intervals from 1968 to 2009. This information was combined in a GIS with acquired TEK and scientific data sets relating to marsh vegetation health and vulnerability characteristics to produce mapping products that provide new information for use in the coastal restoration decision-making process. This information includes: (1) marsh areas that are most vulnerable; and (2) the areas that are most significant to community sustainability

    High-Resolution Spectral Sleep Analysis Reveals a Novel Association Between Slow Oscillations and Memory Retention in Elderly Adults

    Get PDF
    Objective: In recognition of the mixed associations between traditionally scored slow wave sleep and memory, we sought to explore the relationships between slow wave sleep, electroencephalographic (EEG) power spectra during sleep and overnight verbal memory retention in older adults. Design, Setting, Participants, and Measurements: Participants were 101 adults without dementia (52% female, mean age 70.3 years). Delayed verbal memory was first tested in the evening prior to overnight polysomnography (PSG). The following morning, subjects were asked to recall as many items as possible from the same List (overnight memory retention; OMR). Partial correlation analyses examined the associations of delayed verbal memory and OMR with slow wave sleep (SWS) and two physiologic EEG slow wave activity (SWA) power spectral bands (0.5–1 Hz slow oscillations vs. 1–4 Hz delta activity). Results: In subjects displaying SWS, SWS was associated with enhanced delayed verbal memory, but not with OMR. Interestingly, among participants that did not show SWS, OMR was significantly associated with a higher slow oscillation relative power, during NREM sleep in the first ultradian cycle, with medium effect size. Conclusions: These findings suggest a complex relationship between SWS and memory and illustrate that even in the absence of scorable SWS, older adults demonstrate substantial slow wave activity. Further, these slow oscillations (0.5–1 Hz), in the first ultradian cycle, are positively associated with OMR, but only in those without SWS. Our findings raise the possibility that precise features of slow wave activity play key roles in maintaining memory function in healthy aging. Further, our results underscore that conventional methods of sleep evaluation may not be sufficiently sensitive to detect associations between SWA and memory in older adults

    Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity.

    Get PDF
    Decades of research have implicated the ventral tegmental area (VTA) in motivation, learning and reward processing. We and others recently demonstrated that it also serves as an important node in sleep/wake regulation. Specifically, VTA-dopaminergic neuron activation is sufficient to drive wakefulness and necessary for the maintenance of wakefulness. However, the role of VTA-GABAergic neurons in arousal regulation is not fully understood. It is still unclear whether VTA-GABAergic neurons predictably alter their activity across arousal states, what is the nature of interactions between VTA-GABAergic activity and cortical oscillations, and how activity in VTA-GABAergic neurons relates to VTA-dopaminergic neurons in the context of sleep/wake regulation. To address these, we simultaneously recorded population activity from VTA subpopulations and electroencephalography/electromyography (EEG/EMG) signals during spontaneous sleep/wake states and in the presence of salient stimuli in freely-behaving mice. We found that VTA-GABAergic neurons exhibit robust arousal-state-dependent alterations in population activity, with high activity and transients during wakefulness and REM sleep. During wakefulness, population activity of VTA-GABAergic neurons, but not VTA-dopaminergic neurons, was positively correlated with EEG γ power and negatively correlated with θ power. During NREM sleep, population activity in both VTA-GABAergic and VTA-dopaminergic neurons negatively correlated with δ, θ, and σ power bands. Salient stimuli, with both positive and negative valence, activated VTA-GABAergic neurons. Together, our data indicate that VTA-GABAergic neurons, like their dopaminergic counterparts, drastically alter their activity across sleep-wake states. Changes in their activity predicts cortical oscillatory patterns reflected in the EEG, which are distinct from EEG spectra associated with dopaminergic neural activity

    Urocortins: CRF's siblings and their potential role in anxiety, depression and alcohol drinking behavior

    Get PDF
    It is widely accepted that stress, anxiety, depression and alcohol abuse-related disorders are in large part controlled by corticotropin-releasing factor (CRF) receptors. However, evidence is accumulating that some of the actions on these receptors are mediated not by CRF, but by a family of related Urocortin (Ucn) peptides Ucn1, Ucn2 and Ucn3. The initial narrow focus on CRF as the potential main player acting on CRF receptors appears outdated. Instead it is suggested that CRF and the individual Ucns act in a complementary and brain region-specific fashion to regulate anxiety-related behaviors and alcohol consumption. This review, based on a symposium held in 2011 at the research meeting on “Alcoholism and Stress” in Volterra, Italy, highlights recent evidence for regulation of these behaviors by Ucns. In studies on stress and anxiety, the roles of Ucns, and in particular Ucn1, appear more visible in experiments analyzing adaptation to stressors rather than testing basal anxiety states. Based on these studies, we propose that the contribution of Ucn1 to regulating mood follows a U-like pattern with both high and low activity of Ucn1 contributing to high anxiety states. In studies on alcohol use disorders, the CRF system appears to regulate not only dependence-induced drinking, but also binge drinking and even basal consumption of alcohol. While dependence-induced and binge drinking rely on the actions of CRF on CRFR1 receptors, alcohol consumption in models of these behaviors is inhibited by actions of Ucns on CRFR2. In contrast, alcohol preference is positively influenced by actions of Ucn1, which is capable of acting on both CRFR1 and CRFR2. Because of complex distribution of Ucns in the nervous system, advances in this field will critically depend on development of new tools allowing site-specific analyses of the roles of Ucns and CRF

    JADES: Insights into the low-mass end of the mass–metallicity–SFR relation at 3 < z < 10 from deep JWST/NIRSpec spectroscopy⋆

    Get PDF
    © 2024 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We analysed the gas-phase metallicity properties of a sample of low-stellar-mass (log M⋆/M⊙ ≲ 9) galaxies at 3  6, with galaxies significantly less enriched than predicted given their M⋆ and SFR (with a median offset in log(O/H) of ∼0.5 dex, significant at ∼5σ). These observations are consistent with an enhanced stochasticity in the gas accretion and star-formation history of high-redshift systems, prompting us to reconsider the nature of the relationship between M⋆, O/H, and SFR in the early Universe.Peer reviewe

    Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference

    Get PDF
    Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward

    JADES NIRSpec Spectroscopy of GN-z11: Lyman-α\alpha emission and possible enhanced nitrogen abundance in a z=10.60z=10.60 luminous galaxy

    Full text link
    We present JADES JWST/NIRSpec spectroscopy of GN-z11, the most luminous candidate z>10z>10 Lyman break galaxy in the GOODS-North field with MUV=21.5M_{UV}=-21.5. We derive a redshift of z=10.603z=10.603 (lower than previous determinations) based on multiple emission lines in our low and medium resolution spectra over 0.85.3μ0.8-5.3\,\mum. We significantly detect the continuum and measure a blue rest-UV spectral slope of β=2.4\beta=-2.4. Remarkably, we see spatially-extended Lyman-α\alpha in emission (despite the highly-neutral IGM expected at this early epoch), offset 555 km/s redward of the systemic redshift. From our measurements of collisionally-excited lines of both low- and high-ionization (including [O II] λ3727\lambda3727, [Ne III] λ3869\lambda 3869 and C III] λ1909\lambda1909) we infer a high ionization parameter (logU2\log U\sim -2). We detect the rarely-seen N IV] λ1486\lambda1486 and N III]λ1748\lambda1748 lines in both our low and medium resolution spectra, with other high ionization lines seen in low resolution spectrum such as He II (blended with O III]) and C IV (with a possible P-Cygni profile). Based on the observed rest-UV line ratios, we cannot conclusively rule out photoionization from AGN. The high C III]/He II ratios, however, suggest a likely star-formation explanation. If the observed emission lines are powered by star formation, then the strong N III] λ1748\lambda1748 observed may imply an unusually high N/ON/O abundance. Balmer emission lines (Hγ\gamma, Hδ\delta) are also detected, and if powered by star formation rather than an AGN we infer a star formation rate of 2030Myr1\sim 20-30 M_{\odot}\,\rm yr^{-1} (depending on the IMF) and low dust attenuation. Our NIRSpec spectroscopy confirms that GN-z11 is a remarkable galaxy with extreme properties seen 430 Myr after the Big Bang.Comment: Submitted to Astronomy & Astrophysics, 14 pages, 9 figure

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore