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ABSTRACT

BETHEL, M.B.; BRIEN, L.F.; DANIELSON, E.J.; LASKA, S.B.; TROUTMAN, J.P.; BOSHART, W.M.; GIARDINO, M.J.,
and PHILLIPS, M.A., 2011. Blending geospatial technology and traditional ecological knowledge to enhance restoration
decision-support processes in coastal Louisiana. Journal of Coastal Research, 27(3), 555–571. West Palm Beach (Florida),
ISSN 0749-0208.

More informed coastal restoration decisions have become increasingly important given limited resources available for
restoration projects and the increasing magnitude of marsh degradation and loss across the Gulf Coast. This research
investigated the feasibility and benefits of integrating geospatial technology with the traditional ecological knowledge
(TEK) of an indigenous Louisiana coastal population to assess the impacts of current and historical ecosystem change on
community viability. The primary goal was to provide coastal resource managers with a decision-support tool that allows
for a more comprehensive method of assessing localized ecological change in the Gulf Coast region, which can also benefit
human community sustainability. Using remote sensing (RS) and geographic information systems (GIS) mapping
products, integrated with a coastal community’s TEK to achieve this goal, the research team determined a method for
producing vulnerability/sustainability mapping products for an ecosystem-dependent livelihood base of a coastal
population based on information derived from RS imagery prioritized with TEK. This study also demonstrates how such
an approach can engage affected community residents who are interested in determining and addressing the causes and
mitigating the decline of marsh habitat.

Historical image data sets of the study area were acquired to understand evolution of land change to current
conditions and project future vulnerability. Image-processing procedures were developed and applied to produce maps
that detail land change in the study area at time intervals from 1968 to 2009. This information was combined in a GIS
with acquired TEK and scientific data sets relating to marsh vegetation health and vulnerability characteristics to
produce mapping products that provide new information for use in the coastal restoration decision-making process. This
information includes: (1) marsh areas that are most vulnerable; and (2) the areas that are most significant to community
sustainability.

ADDITIONAL INDEX WORDS: Restoration, GIS, remote sensing, traditional ecological knowledge, coastal
Louisiana, land loss, marsh health, community vulnerability, Grand Bayou, ecosystem users, coastal management.

INTRODUCTION

Louisiana’s coastal wetlands serve as essential buffer zones

between land and water in estuaries and coastal zones;

however, they are disappearing rapidly, and those that remain

are often in poor health. The most dramatic coastal marsh

losses in the United States are in the northern Gulf of Mexico,

which has 41% of the nation’s coastal wetlands (Turner, 1997).

Louisiana’s rate of coastal wetland loss reached a peak of

108.4 km2/y in the 1970s (Barras et al., 2003). Since the 1980s,

this peak rate of marsh loss has declined (Britsch and Dunbar,

1993), but the trend of land loss continues, with projected loss

over the next 50 y estimated to be over 1200 km2 (Barras et al.,

2003). The remaining marsh areas serve as a cushion between

coastal communities and the open water of the gulf, as well as

an integral resource for the economic and social viability of

these communities, by supporting the fisheries and coastal/

offshore oil and gas industries, which account for a significant
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portion of the coastal population’s employment (Gramling and

Hagelman, 2005). These coastal marshes are also critical

physical buffers against the full fury of storm events that

impact the more densely populated areas in the gulf region,

such as the Greater New Orleans Metropolitan Area (Freuden-

burg et al., 2009). Therefore, coastal community leaders,

government officials, and resource managers must be able to

accurately assess and predict a given coastal community’s

sustainability and/or vulnerability as this coastal habitat

continues to undergo rapid and dramatic changes associated

with natural processes and anthropogenic activities, as well as

coastal restoration efforts.

The dependency of coastal communities and more populated

areas inland on the marshes was clearly illustrated during the

2005 hurricane season as the Louisiana Gulf Coast bore the

brunt of Hurricanes Katrina and Rita. The destructive impact

of these storms to coastal communities and populated centers

inland was more pronounced after decades of loss of critical

marsh habitat. It is hypothesized that a storm surge approach-

ing New Orleans from the south through existing coastal

marshes could have been reduced by 3.7 m if it had crossed

80 km of marsh before reaching the city (Mitsch and Gosselink,

2007).

Current Coastal Restoration Management

Since the 1980s, the state of Louisiana, in partnership with

various federal agencies, has been implementing wetland

restoration projects to slow the rate of wetland loss. The main

types of projects include freshwater diversions (i.e., river

reintroductions), hydrologic restoration (marsh management),

marsh creation with dredged materials, and barrier island

restoration. Under the Coastal Wetlands Planning Protection

and Restoration Act (CWPPRA), project ideas are evaluated,

and several projects are selected for funding each year. Selected

projects go through extensive planning, design, construction,

and then operations, maintenance, and monitoring. Construct-

ed projects are periodically evaluated, and the project effec-

tiveness results are fed back into the planning process.

Coastal restoration planning tools have tended to focus on

biophysical characteristics of the area of interest. For example,

the Wetland Value Assessment (WVA) is a heavily used

component of the current coastal restoration decision-making

process. It provides an estimate of the number of acres

benefited, enhanced, or restored by a proposed project

(CWPPRA, 2006). Variables considered to be important in

characterizing fish and wildlife habitat are entered into the

WVA model, and a Habitat Suitability Index (HSI) is produced.

The HSI ranges from 0.1 to 1.0 and is a numerical represen-

tation of the overall habitat quality of the particular wetland

being evaluated. Other physical data used in the planning and

evaluation phases include remotely sensed imagery (Folse et

al., 2008; Steyer et al., 2000). Specifically, these image data sets

are used to calculate land loss, among other physical properties

of marsh condition. The land-loss maps typically produced for

the Louisiana Coastal Protection and Restoration Authority

(CPRA) use Landsat 30-m-resolution images for assessing loss

from the regional scale down to projects a few thousand acres in

size. These data sets are suitable for regional assessment of

land and water trends; however, they may not be appropriate

for small project assessments.

More recently, CPRA’s Office of Coastal Protection and

Restoration (OCPR) has been developing a Project Prioritiza-

tion Model (PPM) to support decision making regarding the

selection of proposed restoration projects. This model uses

mathematical calculations to prioritize proposed projects based

on the State Master Plan objectives: (1) reduce economic losses

from storm-based flooding; (2) promote a sustainable coastal

ecosystem; (3) provide habitats for commercial and recreational

activities; and (4) sustain the unique heritage of coastal

Louisiana (CPRA, 2009). The PPM is designed to be an

adaptable tool that allows for the inclusion of new information

as it becomes available. As the data driving the model

improves, the model’s results will help OCPR decide how to

better prioritize future restoration and protection projects

(CPRA, 2009). In fact, OCPR encourages ideas from the public

as to how this model and other restoration tools can be

improved.

The Role of Local Knowledge in Coastal Restoration

Whereas the WVA has proven useful in assessing potential

impact to the habitats of fish and wildlife during the coastal

restoration planning process, little effort has been made to

understand the social and cultural interpretations of restora-

tion within which the biophysical resources are embedded. This

is because scientific models, such as those used for restoration

planning and assessment, are typically built to utilize only

scientific knowledge, which is derived from systematic obser-

vations and experiments that target selective environmental

factors. However, use of only scientific knowledge to inform

restoration management and planning inhibits the ability of

the decision maker to effectively deal with differences in local

conservation priorities, or to collectively consider the social,

cultural, and political impacts of restoration (Balram, Dragi-

cevic, and Meredith, 2004).

Traditional ecological knowledge (TEK) is defined as a

cumulative body of knowledge, practice, and belief that evolves

by adaptive processes, is handed down through generations by

cultural transmission, and centers on the relationships of

humans with one another and with their environment (Berkes,

Colding, and Folke, 2000). Examples of TEK include: impacts of

historical land loss on affected communities; changes in flora

and fauna; natural resource use, and degradation of those

resources over time; a history of man-made structures and

impacts to the ecosystem and community; and the identifica-

tion of priority areas of community significance or concern. A

substantial body of TEK exists in Louisiana’s coastal commu-

nities, particularly in the indigenous groups that have

historically lived in the marshes and make their living directly

from the ecosystem services offered by those marshes. That

source of information is virtually unused in the restoration

planning process. One reason for the underutilization of TEK is

likely because qualitative TEK data are not readily compatible

for input into mathematical models, such as the habitat

variables of the WVA. Nonetheless, there is evidence that

restoration managers and scientists are beginning to recognize

the value of incorporating TEK into the current decision-
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support system. For example, the Louisiana Coastal Area

Science and Technology Program (LCA S&T), which informs

the use of coastal restoration strategies in Louisiana, recom-

mended support of ‘‘research that focuses on local ecological

knowledge’’ noting that, ‘‘such knowledge can inform scientific

discourse and lead to improved project planning’’ (LCA S&T,

2010, p. 4).

Rationale for Data Integration to Support
Decision Making

Studies such as those conducted by Petch, Oauknerova, and

Heywood (1995) and Balram, Dragicevic, and Meredith (2004)

have shown that there are many benefits to integrating TEK

and scientific knowledge in a geographic information systems

(GIS) spatial framework; these include: incorporating inputs

and policies at various levels of spatial aggregation; promoting

spatial and temporal thinking about issues and concerns; and

creating opportunities for learning and sharing of responsibil-

ities. However, there are no examples of applied spatial

knowledge integration research from scientific and local

knowledge sources to inform coastal restoration decision

making. In order to demonstrate the way in which this

knowledge fusion may be used to enhance the current

restoration decision-making process, this study presents a

collaborative GIS method for integrating TEK and scientific

knowledge with spatial environmental data in an interactive

participatory process for establishing restoration priorities,

and it demonstrates how this knowledge fusion may be used to

enhance current restoration decision-making processes. The

integrated data set allows the local and technical knowledge

experts to share, explore, manage, analyze, and interpret the

multidimensional data in a standard spatial context in order to

develop more informed restoration decisions.

The goal of this research was to develop a wetland

restoration planning decision-support tool that incorporates

scientific data sets and TEK to provide a more comprehensive

method of assessing ecological change that can benefit both

ecosystem and human community sustainability. The objec-

tives were to: (1) produce historical land-cover change and

marsh condition maps of a degraded wetland using remote

sensing (RS), GIS, and in-situ marsh biophysical data; (2)

record, document, and analyze the TEK of local indigenous

residents whose livelihoods are dependent on the surrounding

ecosystem; and (3) integrate both sources of information

(scientific and traditional) into a GIS. This research represents

an unprecedented effort to merge diverse spatial, biophysical,

and traditional knowledge regarding marsh condition into a

format suitable for informing current coastal restoration

decision-support processes at a resolution suitable for localized

decision making. It also engages users directly in the process of

analyzing the marsh changes and effects in anticipation of

restoration efforts.

STUDY AREA

The focus of this study is the approximately 71 km2 (27.4 mi2)

area encompassing the ecological livelihood base of the coastal

community of Grand Bayou in lower Plaquemines Parish,

Louisiana (Figure 1). Geographically, Grand Bayou is located

within or near several ongoing and planned CWPPRA marsh

restoration projects that either have affected or will impact the

community and its ecological livelihood base. This area has

experienced some of the highest rates of land loss in the

Louisiana coastal zone. For the area near Grand Bayou (as

calculated for the Pointe a la Hache Digital Orthophoto

Quarter Quadrangle by Dunbar, Britsch, and Kemp, 1992),

the average rate of marsh land loss was 0.73 km2/y between

1932 and 1958, 1.94 km2/y between 1958 and 1974, 1.84 km2/y

between 1974 and 1983, and 1.94 km2/y between 1983 and

1990.

A project specifically related to this research is BA-04—West

Pointe a la Hache Outfall Management. The status of this

CWPPRA restoration project is detailed on the Louisiana

Coastal Wetlands Conservation and Restoration Task Force

Web site (LaCoast, 2008), which contains information and links

relating to restoration projects in coastal Louisiana. The West

Pointe a la Hache freshwater diversion siphons have been

operational since early 1993 and divert sediment and fresh-

water from the Mississippi River into the surrounding

marshes.

The residents of Grand Bayou, who are self-identified as

predominantly Native Americans of the Atakapa tribe, with a

mix of various other cultures to a lesser degree, trace their

ancestry within this region back 200 to 300 y. Community

members have historically sustained themselves by utilizing

natural resources, particularly the marine resources, available

to them in their coastal environment, a tradition that persists

in the Atakapa culture today. Like generations before them,

the residents are fishers, hunters, and trappers who depend

upon the natural resources of the surrounding ecosystem to

sustain their way of life. They utilize the local ecosystem in the

seasonal harvest of all commercial species including shrimp,

oysters, crab, softshell crab, nutria, alligator, and fish. Grand

Bayou residents are intricately tied to the surrounding

ecosystem and have a long history of adaptation to the

challenges associated with persistent change within the

ecosystem due to both natural and anthropogenic factors.

Because of their dependency upon the environment, the

Figure 1. Map of SE Louisiana showing location of the Grand Bayou

study area and parish boundaries.
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residents are actively engaged in issues such as habitat

restoration, water quality, and economic development to

promote conservation and understanding of this complex and

vulnerable ecosystem. Oral history dominates their culture,

and as a result, their knowledge of the ecosystem derives both

from extensive personal experience and from TEK, the

cumulative body of knowledge handed down through genera-

tions. This knowledge makes them valuable partners in

restoration planning.

Since Hurricane Katrina (which had the most devastating

impact to Grand Bayou of any storm in living memory as

reported by the residents), efforts at resource utilization have

become increasingly difficult due to displacement of many

community members and the significant obstacles the commu-

nity faced in the rebuilding process. The residents of Grand

Bayou recognize the importance of rapid and effective marsh

restoration so that community members can return and

continue to live where they are able to successfully sustain

their traditional livelihood of natural resource harvest activ-

ities and retain their endemic understanding of this constantly

changing area.

DATA AND METHODS

Using RS, GIS, and other geospatial technologies comple-

mented by a coastal community’s TEK, we created a detailed

assessment of historical land loss in the study area and

evolution of the landscape to its current condition, a method

for producing a marsh surface condition map that presents

overall marsh health and potential for deterioration, as well as

a method for mapping TEK-based information. These data sets

were combined in a format that can provide a more compre-

hensive assessment of ecological change than is currently

utilized in restoration decision making that includes effects on

local resource utility value and areas of cultural significance.

Studies of the location and historical rates of land loss in

coastal Louisiana are often limited to change in spatial extent;

however, prioritization of future restoration efforts requires

additional information regarding marsh condition. There are

many natural and anthropogenic factors that contribute to

marsh degradation and loss. The initial TEK data collection

indicated that there were two main driving factors related to

land loss in the study area: (1) marsh vegetation health, and (2)

marsh fragmentation. As a result of this information, the

parameters investigated for evaluating potential land loss in

this area were related to biophysical characteristics and

spatially dependent relationships within the landscape. Marsh

biophysical characteristics include the distribution of chloro-

phyll content, leaf area index, vegetation fraction, and biomass.

These biophysical characteristics are indicators of the physio-

logical status of marsh vegetation. Monitoring of these

characteristics through remotely sensed imagery can aid in

the inference of the overall health of these areas so that more

informed restoration management strategies may be imple-

mented. Spatially dependent relationships refer to the patterns

of change related to the configuration and connectivity of land-

cover types within a landscape. Prediction of future change can

be aided through better understanding of the spatial relation-

ships of land-cover types for a given area.

It is well documented that most physiological stress in plants

will reduce the concentration of photosynthetic pigments, and

as a result stressed plants are known to have different spectral

reflectance characteristics compared to healthy ones (Nilsson,

1995). Various vegetation indicies can serve as indicators of

plant health and chlorophyll pigment loss. For instance, Vigier,

Pattey, and Strachan (2004) reported that plant damage was

associated with the chlorophyll absorption in reflectance and

normalized vegetation indicies, showing a loss of chlorophyll

pigment compared to healthy plants. Carter and Spiering

(2002) determined specific wavelengths that are most sensitive

to chlorophyll concentration in an effort to better understand

the relationship between leaf optical properties and chlorophyll

content. Therefore, relative chlorophyll content was used as a

biophysical parameter to assess marsh health variability for

this study.

Leaf area index (LAI) is the ratio of total upper leaf surface of

vegetation divided by a given surface area of the land on which

the vegetation grows. Because LAI most directly quantifies the

plant canopy structure, it is highly related to a variety of

canopy processes, such as water interception, evapotranspira-

tion, photosynthesis, respiration, and leaf litterfall. LAI ‘‘is a

critical variable for understanding the biological and physical

processes associated with vegetated land surfaces’’ (Wang et

al., 2004, p. 114). Given that LAI has been shown to be

important in understanding many aspects of plant canopy

development, growth, and management, it was the second

biophysical parameter, along with chlorophyll content, used in

this study.

The quantification of landscape pattern allows us to identify

interactions among spatial patterns and ecological processes.

Because land-cover maps derived from remotely sensed

imagery only indicate the location and type of land cover,

further processing is needed to quantify and map land-cover

fragmentation (Gustafson, 1998; Turner and Gardner, 1991).

Practical applications of landscape pattern quantification

include: describing how a landscape has changed through

time; making future predictions regarding landscape change;

and evaluating alternative land management strategies in

terms of the landscape patterns that may result. The

calculation of landscape pattern metrics is necessary to

rigorously describe landscape patterns (Gergel and Turner,

2003). The purpose of a landscape fragmentation analysis is to

map the types of fragmentation present in a land-cover type

(i.e., marsh). Turner et al. (2003 p. 3) define fragmentation as

the ‘‘breaking up of a habitat or cover type into smaller,

disconnected parcels.’’ Fragmented land cover is typically

classified into four main categories: patch, edge, perforated,

and core. These fragmentation types are defined by ESRI

(2010) as:

N perforated—pixels along the edge of an interior gap in a

land cover that are degraded by edge effects;

N edge—pixels along the exterior perimeter of a land cover

that are degraded by an edge effect;

N patch—small isolated fragments of a land cover that are

completely degraded by edge effects; and

N core—land-cover pixels that are not degraded by edge

effects.
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Fragmentation type is determined by proximity to fragment-

ing features (such as water in this case). Originally, fragmen-

tation analysis was developed for use on forest land covers but

can be applied to any land cover of interest (ESRI, 2010).

Mapping Historical Land Change

Preclassification Image-Processing Procedures

Historical land-loss assessment of the study area utilized

high-resolution (,2.39 m), multitemporal aerial and satellite

image data sets spanning a period of approximately 40 y, from

1968 to 2009 (Table 1). The image data sets selected for the

study were all acquired between fall and early spring, thus

minimizing confusion in land-water discrimination caused by

the presence of floating aquatic vegetation more common

during summer months (Barras et al., 2003). Image processing

and analysis were accomplished using ERDAS Imagine 9.3

software. The images were georectified and then resampled as

necessary to a common spatial resolution of 2.39 m using the

nearest neighbor method. To ensure uniform georegistration,

image data sets were projected to the Universal Transverse

Mercator (UTM) Zone 15 North American Datum (NAD) 83

coordinate system. Image frames of scanned aerial photos were

mosaicked using an image overlay function, and all image data

sets were subset to the study area boundaries. Radiometric

enhancement in the form of adaptive filtering noise reduction

was applied to the 1968, 1979, and 1995 aerial photos prior to

classification. This technique preserved the subtle details in

the scanned images while removing noise resulting from the

digitization process, as manifested by a grainy appearance.

Image-quality issues in the 1968, 1979, 1991, and 2004 data

sets resulted in difficulties with classification of land and water

in some areas. As a result, subsets were used during or prior to

classification to isolate these problematic areas for further

processing. Subsets were necessary to isolate areas of sun glint,

to address image vignetting, and to deal with the effects of

brightness differences along mosaic seam lines (typically

affecting ,20% of the total image area). Cloud masking

necessary in the October 30, 2009 image was accomplished by

creating a thematic layer in which the pixel values unique to

the clouds in that image were grouped into a ‘‘cloud’’ class,

which was subsequently recoded to zero to exclude cloud areas

that corresponded to 6% of the total image area.

Image Classification

Preprocessed image data sets were classified using a

standardized methodology based on a hybrid approach of level

slicing, and supervised and unsupervised classification tech-

niques. These techniques were combined with recoding of

resulting thematic images to derive land-water binary maps for

each data set, as well as a vegetation–non-vegetation binary

map for the October 30, 2009, data set.

In the supervised classification technique, areas of interest

(AOIs) were developed for use as training clusters in the

creation of unique spectral signatures for each of the classes.

For this process, the eight neighborhood mode was used to

determine the pixels that would be considered contiguous (i.e.,

similar in value) to the selected pixel. The spectral Euclidian

distance (the spectral distance from the mean of the seed, or

selected pixel) was kept as low as possible, with the goal of

obtaining representative training clusters with standard

deviations of 3 or less and consisting of a minimum of 25

pixels. This convention was maintained whenever possible,

although it was at times necessary to accept slightly higher

standard deviation values, depending upon image quality.

While a minimum number of 10 training signatures was

obtained for each class, in some images 50 or more training

sites were selected to adequately represent the variations

within a class. The probabilities of the spectral signatures were

normalized prior to the supervised classification, which was

based upon a maximum likelihood classifier. A distance file was

created in the process and used, along with the resulting

supervised classified image, to create a threshold image based

on a confidence level of 0.050 and x2of 9.490. The threshold

image resulted from iteratively identifying class threshold

values with an image raster attribute table using the original

image data set as reference. Once these class threshold values

were determined, all values were recoded as land, water, or no

data for each image and for vegetation, nonvegetation, and no

data for the October 30, 2009, image. For this analysis, the

single-band aerial image files were represented as red-blue-

green (RGB) in Imagine 9.3, with the same pixel value

representing each band in the RGB signature (corresponding

to image brightness).

Unsupervised classification employed the iterative self-

organizing data analysis technique (ISODATA), a clustering

method that uses a minimum spectral distance formula to form

Table 1. Imagery used in land-change analysis.

Image Date Image Type Image Source Image Resolution

11/25/1968 .BW scanned aerial photography U.S. Army Corps of Engineers, New Orleans .1:30,000 (600 dpi)

03/26/1979 .CIR scanned aerial photography NASA/UL Lafayette Regional Application Center .1:65,000 (1,500 dpi)

11/05/1991 .Digital orthophoto quarter quadrangles (DOQQ) USGS Earth Resources and Observation Science

(EROS) Center

.1 m

01/24/1995 .CIR scanned aerial photography NASA/UL Lafayette Regional Application Center .1:65,000 (1,500 dpi)

01/24/1998 .DOQQ EROS .1 m

01/21/2004 .DOQQ EROS .1 m

10/27/2005 .DOQQ EROS .1 m

10/30/2008 .DOQQ EROS .1 m

10/30/2009 .Satellite imagery DigitalGlobe Quickbird .2.39 m

11/12/2009 .Satellite imagery DigitalGlobe Quickbird .2.39 m
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clusters or classes of similar spectra for an image data set. The

clusters were initialized from statistics, and the number of

classes specified varied between 25 and 75, with fewer classes

necessary in images exhibiting clear delineation between land

and water classes. Maximum iterations were set at 100, with

the convergence threshold set at 0.950.

When necessary, an unsupervised classification image was

used to classify remaining unclassified or undetermined pixels

in a threshold image. This was accomplished by overlaying the

threshold image on the original image and linking it geograph-

ically to an unsupervised classification image. In this way, trial

and error and careful examination of the images were used to

make the best estimates of appropriate classification of

remaining undetermined pixels, and thus enhance classifica-

tion accuracy. In addition, supervised classification was

performed on areas of mixed cluster issues resulting from

unsupervised classification to better identify land and water

pixels for those problem areas. Also, clusters that were not

easily labeled were separated from the rest of the image, and

then the classification algorithm was applied again to obtain

additional clusters (Jensen et al., 1987). Each final classified

image was recoded for three values: unclassified, land, and

water.

Postclassification modifications designed to reduce classifi-

cation error related to noise inherent in the data included a

neighborhood analysis, a GIS Analysis Clump procedure,

applied to the recoded classified images using four connected

neighbors to identify contiguous areas of class values. A GIS

Analysis Eliminate procedure was then applied to eliminate

‘‘clumps’’, i.e., small island classes (or noise) within larger

classes, using four contiguous pixels or less as the threshold for

defining a clump to be eliminated.

Change Analysis

A multidate postclassification comparison was performed as

a means of detecting changes in land-water distribution within

the study area during the period between 1968 and 2009. Pairs

of land-water classified images were compared pixel by pixel,

and each comparison resulted in a change detection matrix of

land-water transformations (or lack of transformation) and the

production of a categorical map depicting and quantifying land,

water, land loss, and land gain.

Critical visual examination of sequential change maps

revealed areas where land-cover transformations appeared

impermanent, reversible, and possibly cyclical. Pixel by pixel

comparisons of successive land-cover change maps allowed the

delineation of these areas, which were then characterized as

transitional zones. Transitional zones were separated from

areas that consistently exhibited land loss or gain throughout

all time periods analyzed. These transitory land changes were

separated from the actual land-loss class so that only land that

was permanently lost from a particular date to present was

categorized as ’’actual land loss.’’ The concept of combining

several years of observations as a means of discriminating

permanent land loss or gain from transitory loss or gain

resulting from episodic events such as hurricanes was

suggested in methods used by Barras, Bernier, and Morton

(2008), and is the basis of this analysis.

Following the identification of the transitional areas, field

investigation was conducted to determine possible causes of

these features. The 2005–08 transitional change map was loaded

into a handheld computer equipped with global positioning

system (GPS) to navigate to several transitional zone locations.

These areas tended to be shallow submerged bare land or marsh

vegetation, likely emergent during low tidal conditions, and thus

highly influenced by meteorological (i.e., wind setup/setdown

effects) and tidal conditions at the time of image acquisition.

Accuracy Assessment of Land-Cover Classifications

Quantitative accuracy assessment of land-cover classifica-

tion reflects how well the land-cover classes were identified

from the source imagery. Consistent with guidelines suggested

by Congalton and Green (2009), each land-cover classification

map created for this study was assessed for accuracy based on

the selection of 150 stratified random points, with a minimum

50 points representing each map class. The error matrix

generated for each classified image provides the basis for the

overall accuracy statistics and the Kappa coefficient of each

classification. An overall accuracy level of 85% was considered

the minimum value for acceptable results (Anderson et al.,

1976). All final land-water classifications exceeded this

accuracy level threshold.

Mapping Community Restoration Priorities and
Observed Change Using TEK

Acquisition and analysis of TEK for this study were based on

collaborative field work methods in which TEK is used in

scientific studies to locate study sites, obtain specimens and

data, and interpret field observations and results. These

methods have been shown to provide an excellent means of

interacting with a community for an extended period (Hun-

tington, 2000). In contrast to other social science methodologies

that utilize a preplanned survey of questions, collaborative

field work generally records subjects’ observations as they are

made in the field, a technique which allows for a more

descriptive and complete account of individual and group

memory of environmental change (Manning, 2005). Addition-

ally, information gained over long-term relationships and

multiple site visits is more detailed than that collected during

a single interview. As a result, TEK collection for this study was

a dynamic process responsive to changing environmental

conditions and accomplished via site visits, frequent phone

calls, and social interactions. For the purposes of this study, the

collaborative field work effort included introducing the com-

munity to the geospatial technology used for the project so that

the ecosystem users (participating Grand Bayou residents) and

the physical scientists associated with this project became

familiar with the reciprocal knowledge of each group. The

ecosystem users learned about the mapping techniques and

scientific field data collection from the scientists and were

guided by them in understanding it, and the physical scientists

learned of the TEK data and were guided by the ecosystem

users in understanding it. Also, the two groups learned one

another’s vocabulary in describing study area features for the

sake of successful dialogues.
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Maps of the study area were used for visual aids to

knowledge transfer; specifically, map biographies of the local

residents were determined to be useful (Calamia, 1999;

Ferguson and Messier, 1997) within the ongoing collaboration,

especially when choosing sites. For these map biographies,

printed maps of the Grand Bayou study area were produced

from acquired satellite and aerial imagery and used to establish

a relative time line of observed ecosystem changes and to

document those changes by plotting them directly onto the

map. The printed map was also used to record traditional

community names for features and to identify ‘‘sensitive areas’’

or areas of particular concern to the local peoples, such as

cultural sites (i.e., burial grounds) and marine or mammal ‘‘eco-

zones’’’ (i.e., fish or animal breeding/spawning areas of

particular importance to the community, traditional trap-

ping/fishing areas, etc.).

TEK Sample

Five Grand Bayou resident fishers/trappers participated in

the study. Following community-assisted identification of a

primary informant with expertise and in-depth understanding

of the study area, the remaining informants were chosen using

a snowball sampling method wherein the primary informant

recommended additional informants with comparable project-

related knowledge (Patton, 1990). All informants identified

themselves as Native American, specifically of the Atakapa

tribe, and had been raised in the village.

TEK Data Collection, Transcription, and Coding

Proper entrée procedure was followed (West et al., 2008),

which included a series of social visits with many community

members and composition of a ‘‘declaration of principles,’’

which outlined expectations and commitments for all involved

for the duration of the project. Verbal permission was obtained

to record conversations using a digital voice recorder prior to

beginning each session of field sampling, TEK collection, or

TEK verification activities. The recorder remained on for the

full duration of each data-collection session. A social scientist

present at each session transcribed all audible conversation as

soon as possible following collection, changing the names of

informants to protect their anonymity, and inserting field notes

regarding setting, activities, and people present. Transcripts of

a total of 53 h of recorded TEK data were uploaded to Atlas.ti

qualitative data analysis software (http://www.atlasti.com/)

and coded using inductive coding (Crabtree and Miller, 1992).

Coding of the data was accomplished through a line-by-line

review of the transcripts, resulting in the creation of themes

designed to identify underlying concepts within the data.

Direct quotations from the transcribed data sets were used to

support and illustrate the themes. Relationships between codes

were identified given the interconnected nature of cultural and

environmental factors. Segments of the transcripts were also

linked to in-field photos and maps used in the field to provide

the coder with a visual reference relating to the context of the

linked conversation. Linkages were subsequently used to

identify emerging themes within the TEK relative to the local

landscape.

Theme and Codebook Development

Procedures for developing TEK themes and a formal

codebook were based on methods outlined by Kurasaki (2000)

and included annotating the transcribed text, sorting the

annotation list, labeling thematic categories, and refining the

theme list. Annotations consisted of brief notes summarizing

the main points expressed throughout the transcribed data set.

These annotations were used to identify themes that emerged

during this process. Using the Atlas.ti software, excerpts of the

raw data were linked to these annotation themes to serve as

examples of each annotation in the list.

The codebook was developed by listing all of the codes that

emerged from the TEK data and noting brief definitions for

each. For the purposes of synthesis with mapping practices, the

codes were organized into two groups, geographic codes and

social science codes. Geographic codes represented mappable

locations (specific geographic areas that can be depicted on a

map). Social science codes represent informants’ observations

regarding marsh conditions (i.e., descriptor variables used to

characterize attributes associated with mappable locations),

specific events that represent factors contributing to marsh

decline and that inform the project as background information,

and sensitive areas of the ecosystem relative to work, quality of

life, and cultural significance. Throughout codebook develop-

ment, preliminary results were verified by contributing

informants in a format that could be easily assessed for

accuracy (i.e., maps and verbal summaries, as opposed to the

complete coded transcriptions).

Intercoder Reliability Assessment

Intercoder reliability assessment was undertaken to ensure

minimization of coder bias or random error arising from

judgments made about categories and themes emerging from

the complex qualitative data sets. Intercoder reliability is a

quantitative measure of agreement between multiple coders

with regard to the ways in which codes are applied to TEK data

(Kurasaki, 2000). The procedures used to determine intercoder

reliability for this study are based upon recommendations by

Hruschka et al. (2004) and Kurasaki (2000). First, steps were

taken to familiarize a second social scientist with the project

and associated TEK data. Due to the volume of TEK data and

time constraints, the second coder was presented with

approximately 10 pages of randomly selected textual ‘‘idea

units’’ from the TEK data, instead of the entire TEK data set as

suggested by Hruschka et al. (2004). After the second coder

applied the same systematic coding process using the codebook

as a guide, results from the two independent coders were

compared, and the agreement between the coders was

calculated.

Calculation of intercoder reliability agreement involved the

random selection of 20 lines per coded page. The results of the

two coders were checked for agreement using the randomly

selected line plus five lines above and below the selected line.

The inclusion of the additional lines is designed to accommo-

date the expected variation between coders with respect to

their identification of TEK relating to specific codes (Kurasaki,

2000). Because of the conversational nature of the interviews, it
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was common to find peripheral text surrounding more

substantive, codable text. An agreement matrix was developed,

and the agreement between the coders was calculated as the

ratio of agreements to total random excerpts for each codebook

theme. An overall agreement across all the codes was

calculated by averaging the agreements obtained for each code

(Kurasaki, 2000). The comparison results were then used to

revise the codebook as necessary until an acceptable overall

agreement value was achieved.

Applying Numeric Codes

Once acceptable intercoder reliability was established and

the codebook finalized, Atlas.ti was used to investigate the

passages related to the ‘‘Marsh Condition’’ codes in the

transcribed documents in reference to the ‘‘Mappable Loca-

tions.’’ Based on the TEK information associated with each of

these Marsh Condition codes, an attribute value of +1, 21, or 0

was assigned to each mappable location.

With regard to community assessment of restoration

priority, a value of +1 is indicative of an area that is important

or urgent to restore, while a value of 21 indicates an area

considered relatively unimportant or not urgent to restore. A

value of 0 indicates that the location or feature was mentioned

in the TEK, but a determination of its importance is

inconclusive. It is important to note that a 21 value does not

indicate that an area should not be restored, but rather that, in

comparison to other areas, it is a lower priority for the

community.

With regard to assessment of observed change, a value of +1

is indicative of a location or feature characterized by a positive

or stable condition over time with regard to natural resources

used by the community at that location. In contrast, a value of

21 is associated with a location or feature that has undergone

negative change or degradation in natural resources over time.

A value of 0 indicates that the TEK information is inconclusive

for a particular mappable location/feature.

Calculation of the Restoration Priority Index (RP) and the

Index of Observed Change (OC) is based on the following:

i ~ (a{b)x ð1Þ

where i 5 index, a 5 number of codes with value of +1, b 5

number of codes with value of 21, and x 5 total number of

codes.

The RP and OC indices were used to produce TEK-based

maps showing the locations of features identified in the TEK, as

well as a community prioritization for the restoration of those

features (Figure 2). The maps were presented to the TEK

informants for verification and validation of the results, and

any discrepancies were corrected prior to final map production.

Mapping Marsh Areas Vulnerable to Loss Using
Scientific Data Sets

Field Data Collection

Sampling site selection for the scientific marsh biophysical

condition data sets was based on accessibility, extent of land

loss observed, importance to the community, and availability of

historical data (both TEK and scientific data). Sites were also

evaluated with regard to their representation of various marsh

conditions observed within the study area. Areas of broken and

degraded marsh were chosen to contrast with other selected

areas of relatively contiguous, ‘‘firm’’ marsh. Several trial field

data-collection campaigns were conducted to test and refine

field data-collection methods and to determine logistics relative

to site accessibility, data and hardware needs, time required at

each site, and personnel requirements for subsequent field

sampling. Based on these trials and the field data-collection

resources available for this effort, it was possible to sample 20

sites within the 71 km2 area during an approximate 6 h window

of opportunity when the sun angle was most appropriate for

spectral reflectance measurements. Subsequent to data collec-

tion, two sampling sites were determined to be statistical

outliers when examining the data distribution and semiovar-

iogram/covariance cloud for the field data collected. These two

sites were considered to be in error and removed from the data

set for further analyses. The remaining field data were

normally distributed and included observations at 18 sites for

chlorophyll content and LAI. Instruments used in the scientific

field data sampling included: Ocean Optics USB4000 Field

Spectroradiometer to measure in-situ spectral reflectance; LI-

Figure 2. TEK-based indices maps depicting locations of features

identified with TEK collected for this study: (A) TEK-based index of

observed change map reflecting relative condition over time of these

locations as it relates to the natural resources used by the community; and

(B) TEK-based index of restoration priority map showing community

prioritization for the restoration of these features.
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COR LAI-2000 Plant Canopy Analyzer to measure relative

marsh biomass; and the FieldScout CM1000 Chlorophyll Meter

to measure relative chlorophyll content.

The Ocean Optics USB4000 spectroradiometer system

consisted of two connected spectroradiometers. One measures

incoming sunlight and the other measures upwelling light from

a target (,350–1045 nm, at ,0.2 nm resolution). A white

reference panel (made to reflect 99% of incoming radiation) was

also used to calibrate reflectance measurements. The spec-

trometers were operated using a ruggedized laptop and data-

acquisition software. The simultaneous collection of upwelling

and incoming radiation compensates for changes in lighting

conditions between calibration and data collection.

Top of canopy (TOC) reflectance measurements with the

Ocean Optics USB4000 system were made by mounting the

fiber optic of the spectroradiometer on a pole to allow for the

collection of spectral reflectance data at an offset from the

operator. This minimizes any shadows or interference in data

collection by the user and allows data to be collected from the

top of the vegetation canopy. This configuration results in an

approximate 27 inch instantaneous field of view (IFOV). Three

reflectance measurements were made within a target data-

collection area (DCA) of 10 m2 and then averaged for each

sampling site. One calibration measurement with the white

reference panel was also made at each sampling location.

The LAI-2000 Plant Canopy Analyzer measures the proba-

bility of seeing the sky looking up through a vegetative canopy

in different directions. Using these measurements, the LAI-

2000 calculates foliage amount (LAI) and foliage orientation

(mean foliage tilt angle) by measuring the rate at which

radiation is attenuated as it passes through the canopy. The

LAI calculations require measurements above canopy period-

ically to calculate total transmittance at the time that below-

canopy measurements are made. In this manner, the LAI

readings are calibrated for atmospheric conditions. If sky

conditions are stable, one above-canopy measurement will

suffice for several subsequent below-canopy measurements

(LAI-2000, 1992). For this study, one above-canopy measure-

ment was made for every four below-canopy measurements. At

each sampling site, three separate above/below-canopy sam-

pling sequences were made and averaged within a 10 3 10 m

area.

The FieldScout CM1000 Chlorophyll Meter senses light at

wavelengths of 700 nm and 840 nm to estimate chlorophyll

content in leaves (Spectrum Technologies, 2008). Chlorophyll a

absorbs 700 nm light, and, as a result, the reflection of that

wavelength from a leaf is reduced compared to the reflected

840 nm light. Light having a wavelength of 840 nm is

unaffected by leaf chlorophyll content and serves as an

indication of the amount of light that is reflected due to leaf

physical characteristics. As each measurement is taken, the

result is displayed as an index with a range of 0 to 999. This

index is based on the ratio of 700 nm light to 840 nm light

reflected from the target, multiplied by a constant. A standard

method was used to obtain measurements with the CM1000

that included taking readings with the sun always at the user’s

back and at an angle of approximately 45u between the user and

the target. Five CM1000 measurements were taken within a 10

3 10 m area and averaged at each sampling location.

Image Calibration

The field data collected with the Ocean Optics USB4000 at

the predefined sampling sites throughout the study area

occurred on November 2, 2009, and were the basis for

atmospheric correction of the October 30, 2009, image data

set acquired for this project. The DCA of the field data collected

at each sampling site approximates an area that includes four

contiguous pixel values extracted and averaged from the image

data set. Image calibration was performed using an empirical

line calibration (ELC) between the reflectance values for the

field spectroradiometer at each sampling site and the values for

the same sites retrieved from the imagery. The ELC method of

calibration matches the spectral reflectance of remotely sensed

images to in-situ spectral reflectance measurements obtained

at approximately the same time as the remote-sensing

overflight (Jensen, 2004). The in-situ and remote-sensing–

derived spectra were regressed, and the values were then

applied to the remote-sensor data on a band-by-band basis,

removing atmospheric attenuation (Jensen, 2004). Regression

analysis was performed between the averaged Ocean Optics

spectroradiometer reflectance values and the averaged raw

digital number (DN) values at each 10 3 10 m sampling site for

each Quickbird band. The results are as follows (values are R2

and standard error, respectively): Band 1—0.99/0.74; Band 2—

0.99/0.91; Band 3—0.99/1.5; and Band 4—0.98/5.29.

Estimated CM1000 and LAI Maps

Clouds were masked in the October 30, 2009, image as

described in the Preclassification Image-Processing Procedures.

This ‘‘cloud mask’’ file was intersected with the original extent of

the calibrated October 30, 2009, image to mask out the areas

obscured by clouds for later analyses. Subsequently, a super-

vised classification and threshold process was performed on the

cloud-masked image using the methods described previously.

The resulting classes were recoded as either vegetation or

nonvegetation. The nonvegetation areas were then masked out

using the same procedure as was used to mask out clouds. The

final calibrated, masked October 30, 2009, image data set was

used in developing the estimated LAI and chlorophyll maps.

Several vegetation indices and band combinations were

derived based upon the averaged reflectance values extracted

from the November 2, 2009 reflectance field data that matched

the calibrated image data set for each band at each sampling

site. The literature identifies several vegetation indices found

to be promising in mapping wetland vegetative vigor as it

relates to chlorophyll content and LAI (Gitelson, 2004;

McCarthy et al., 1993; Ozesmi and Bauer, 2002; Qi et al.,

1994; Zhang et al., 1997). Therefore, the vegetation indices

tested in this study included: the Normalized Difference

Vegetation Index; Ratio Vegetation Index; Green Normalized

Difference Vegetation Index; Atmospheric Resistant Vegeta-

tion Index; Modified Soil Adjusted Vegetation Index; Modified

Triangular Vegetation Index; and Wide Dynamic Range

Vegetation Index. These vegetation indices were statistically

assessed for correlation with the ground information acquired.

Each vegetation index was produced from the averaged field

reflectance data that corresponded to each band in the October
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30, 2009, image. Also, each vegetation index was computed for

the calibrated, masked October 30, 2009, image data set. This

was done for the reflectance values at each sampling location.

Each field data set (chlorophyll meter and LAI) was divided

into a test and validation data set, so that the resulting

estimated maps produced with the test data sets could be

assessed for accuracy. Ten sampling sites were randomly

chosen as the test data set, and the remaining eight sites served

as the validation data set for each parameter estimated.

Stepwise multiple regression and multiple correlation

analyses were performed on each test data set using SAS

software (SAS Institute, 2002) to determine the best band

combination/vegetation index to use for each dependent

variable tested (chlorophyll meter and LAI values), and to test

for the presence of multicollinearity among the variables in the

regression model (Cody and Smith, 1991). A statistical

regression analysis was performed to ensure that a relation-

ship existed with the imagery, and given that relationship, the

image-processing technique determined to have the strongest

relationship with the field data collected was used to create the

estimated chlorophyll meter and LAI maps. The parameter

estimates for the regression equations chosen as the best

estimate for each dependent variable were applied to the

corresponding October 30, 2009, index image.

The resulting vegetation index ranges for the estimated

chlorophyll content and LAI images were used to recode the

image into relative categories of vegetative health and produce

a classed ‘‘relative’’ marsh health map. The class threshold

values were determined based on statistical analyses of the

vegetation index values across the study area and consultation

with OCPR project collaborators. As a result, a three-class

Natural Breaks (Jenks) classification of the continuous data

values for each estimated map was used for display and recoded

as high, medium, and low relative marsh health classes.

Fragmentation Map Production

The final land-water image for each historical image date

was used to produce fragmentation maps. This was accom-

plished with the Landscape Fragmentation tool in ArcGIS 9.3,

which testing has shown to be equivalent to procedures used by

Vogt et al. (2007). For the purposes of this study, landscape

fragmentation classes based upon research by Vogt et al. (2007)

were used for mapping spatial patterns and further refined by

consultation with the collaborating OCPR scientists with the

aim of creating a mapping product that could be easily

integrated into their existing decision-support system. As a

result, the land class in each image was further classified into

six categories: perforated, edge, patch, small core (,250 acres),

medium core (between 250 and 500 acres), and large core (.500

acres). An edge width parameter was specified as 15 m. The

literature indicates that the edge width varies according to the

issue of interest (Riiters et al., 2000; Vogt et al., 2009). This edge

effect distance was chosen after testing several different values

for this parameter, and based on visual examinations of the

resulting fragmentation maps and input data sets, it was

decided that 15 m represented the optimum distance for edge-

effect influence for this data set.

The fragmentation maps were then combined in ArcGIS 9.3

with the corresponding historical land-change image. For

instance, the 2009 fragmentation map was combined with the

2005–09 land-change image. The resulting combined images

show areas where the land-loss class intersects the fragmen-

tation classes. These areas of intersection were then reclassed

in the combined images as: patch to land loss; edge to land loss;

perforated to land loss; core 1 to land loss; core 2 to land loss;

and core 3 to land loss. Area was calculated for each of these

classes in the combined image, and then the proportion of the

total area that went to land loss was calculated for each

fragmentation class for each historical image date.

The proportions of each fragmentation class that went to

land loss for each date were statistically analyzed in SAS with a

General Linear Model (GLM) to determine any significant

difference that existing among the land-loss proportions of the

fragmentation classes. A Duncan’s multiple comparison test

was performed to further investigate any differences existing

between the fragmentation classes (Cody and Smith, 1991).

RESULTS

Historical Change

Six final change maps were produced depicting the transi-

tional area class, as well as actual land-loss and actual land-gain

classes. For each of these maps, the total area in hectares (and

acres) was calculated for each class. Net land loss and the

average land loss per year were then calculated for each time

period represented. The results for each composite map are

shown in Table 2, and Figure 3 shows a composite map that

represents actual land loss for each of six change maps produced.

The land-to-water ratio was calculated for each land-water

classification date. The results show that the proportion of land

to water in the study area consistently decreased from 1968 to

2009. The proportion of total land to total water in the study

area can be summarized as follows: 2.62 in 1968; 1.57 in 1979;

0.79 in 1991; 0.71 in 1998; 0.65 in 2004; 0.61 in 2005; and 0.48 in

2009. The proportion of total land to water area for each

historical image date is shown in Figure 4.

TEK-Based Mapping Results

The intercoder reliability assessment for the coded tran-

scripts resulted in a 98% overall agreement between the two

coders in assigning codes to 20 randomly selected text segments

from the transcribed TEK data sets. This finding strengthens

the validity of the coding results, as well as the conclusions

based on the coded text data, and demonstrates that subjec-

tivity in the coding process was minimized.

Identification of specific areas of concern was difficult for

some informants because they emphasized that the entire

study area was vital and contributed to their safety and

lifestyle sustainability. Specifically, they rely on the health of

the entire marsh for protection during hurricanes and tropical

storms and as their primary means of sustaining themselves

through shrimping, oystering, and fishing. It was emphasized

that every area is important to restore because the whole

ecosystem works together. Therefore, the reader should not

assume that a low-priority area should not be addressed. The

entire area represented on the RP map and beyond has been
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identified by the community as in need of restoration. However,

within that guideline, researchers ranked locations (for both

the Restoration Priority and Observed Change indices) given

the context of informants’ responses using the numeric coding

process described previously and assuming limited resources

available for restoration. It was then concluded that the areas

the community could not live without—their village and their

sacred burial site, would represent the upper limit. The

resulting TEK-based maps were presented to the informants

to ensure that the TEK information was represented properly.

In this manner, the maps were validated as accurate

representations of the TEK.

The construction of the canals (primarily for oil extraction) in

the study area from the 1950s to the 1970s emerged as the most

frequently mentioned cause of the land loss observed when

analyzing the TEK. The informants accept that some land loss

is due to natural processes, such as wave and tidal action, and

that it also results from episodic storm events. However, they

have observed that the average rate of land loss due to these

natural erosion processes was greatly accelerated by the

construction of the canals.

Throughout the discussions with the Grand Bayou residents,

they frequently offered local restoration and mediation pro-

posals that they believe could reverse the land-loss trends in

the area. The residents’ accounts show that they do believe that

the rate of land loss can be slowed, and they have hope of

reversing some of the damage done to the local ecosystem upon

which they depend; however, they expressed little faith in the

current restoration policies and programs of authorities. Their

skepticism is based on their experience that scientists and

restoration managers currently fail to consider their sugges-

tions and knowledge when planning and implementing local

restoration projects.

Estimated Chlorophyll and LAI Map Production Results

The results of the statistical analysis indicate that the best

model for estimating chlorophyll meter values is a GVI (green

vegetation index) with the following parameter estimates:

intercept 5 127.94741, and slope 5 217.98764. The R2 for this

model is 0.47 and is significant, with a P-value of 0.0278. A

noise-reduction filter was applied to the resulting estimated

Figure 3. Actual land loss from November 15, 1968, to November 12,

2009, by time periods calculated for this study using historical aerial and

satellite imagery.

Table 2. Land loss by time periods and hurricanes that passed within 65 miles of study area.

Time Period

Actual Land Loss in

Hectares (acres)

Actual Land Gain in

Hectares (acres) Hurricane Event

Net Land Loss in

Hectares (acres)

Average Land Loss Per

Year in Hectares (acres)

11/25/1968–03/26/1979

(,10 y, 4 mo) 711 (1758) 148 (367) .Camille 563 (1391) 69 (170)

03/26/1979–11/05/1991

(,12 y, 7 mo) 1042 (2574) 148 (367) .Bob, Florence 894 (2208) 83 (205)

11/05/1991–01/24/1998

(,6 y, 3 mo) 392 (969) 243 (600) .Danny 149 (369) 63 (155)

01/24/1998–01/21/2004

(,6 y) 288 (711) 167 (413) .Georges 121 (298) 48 (119)

01/24/2004–10/27/2005

(,1 y, 9 mo) 343 (848) 199 (491) .Ivan, Cindy, Katrina 144 (357) 196 (484)

10/27/2005–11/12/2009

(, 4 y) 397 (980) 62 (154) .Gustav 335 (826) 99 (245)

Figure 4. Graph of proportion of total land to water area within the

Grand Bayou study area for each date of historical image data used.
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chlorophyll meter map. The standard error resulting from the

regression of predicted versus actual values was 31.64.

The best model for producing the estimated LAI map is an

MTV12 (modified triangular vegetation index) with the

following parameter estimates: intercept 5 21.84060, and

slope 5 6.19449. The R2 value for this model is 0.59 and is

significant, with a P-value of 0.0098. A noise-reduction filter

was also applied to the resulting estimated LAI map. The

standard error resulting from the regression of predicted

versus actual values was 0.68.

The parameter estimates for each dependent variable were

applied to the corresponding October 30, 2009, vegetation index

image. The resulting index ranges for the estimated chloro-

phyll content and LAI images were used to recode the image

into relative categories and produce classed ‘‘relative’’ marsh

condition maps. The chlorophyll content and LAI class

threshold values were determined based on statistical analyses

of the vegetation index values across the study area and

subsequent consultation with OCPR project collaborators. As

stated previously, the continuous data values for each

estimated map was used for display and recoded as high,

medium, and low relative marsh health classes.

Due to delay of field data collection because of persistent

adverse weather conditions coinciding with image-acquisition

availability, it should be noted that the chlorophyll meter and

LAI measurements were collected at a time when the marsh

vegetation was nearing fall senescence. The ‘‘browning’’ of the

marsh vegetation just prior to fall senescence was visible in

certain areas, depending on the dominant marsh vegetation

varieties for a particular location. It is expected that this

variability in natural senescence occurring at the time of field

sampling contributed to the variability in vegetative stress

measured and mapped.

Fragmentation Map Production Results

The results of the GLM statistical analysis showed that the

model was significant, with an F-value of 13.38 (df 5 3), and

Pr . F 5 ,0.0001. The Duncan’s multiple range test (alpha 5

0.05) showed that the Patch class was significantly more likely

to be lost than any other class. While the Edge class was

significantly more likely to be lost than the Core class, it was

not significantly different from the Perforated class. The Core

class was significantly less likely to be lost than were either

Patch or Edge areas but was not significantly different from

Perforated areas.

As a result of this analysis, the 2009 fragmentation map was

recoded as follows: Patch class 5 high risk of loss; Edge class 5

mediumriskof loss;andPerforatedandCoreareaswerecombined

to make up low-risk areas of loss. This recoded three-class frag-

mentationmapwasthencombinedwiththeestimatedchlorophyll

content and estimated LAI maps with the same classification

scheme to produce the final marsh vulnerability map.

Merging the Scientific and TEK Data Sets to Enhance
Coastal Restoration Decision Making

To combine the derived data sets to map relative risk of loss,

the values of the derived data sets representing estimated

chlorophyll content, estimated LAI, and fragmentation class

were all reclassified to a common measurement scale (high,

medium, and low risk of loss). Values representing water were

restricted from this analysis so that only marsh areas would be

included. A weighted overlay was performed in ArcGIS 9.3,

where the input data sets were assigned percentages of

influence. The higher the percentage, the more influence a

particular data set has in the resulting map. Because the initial

TEK data collection indicated that the two main driving factors

related to land loss in the study area were marsh vegetation

health and marsh fragmentation, with no clear indication that

one factor was more dominant than the other, the estimated

chlorophyll content and LAI input data sets were each

weighted at 25%, and the fragmentation map was weighted

at the remaining 50%. The input data sets were weighted in

this way so that the total weighting would be divided equally

between the biophysical (chlorophyll content and LAI) and

spatial relationship (fragmentation class) measurements.

Pattern analysis was performed on the vulnerability map

produced from the weighted overlay of the estimated chloro-

phyll and LAI maps with the 2009 fragmentation map to

determine significantly clustered areas of high land-loss risk.

This analysis was performed to determine the probability that

spatial clustering was not due to random chance. Cluster and

outlier analysis was deemed necessary in order to provide

restoration managers with information regarding high-risk

areas that result, not from random environmental conditions or

from error, but that are instead the result of driving

environmental variables. This data can be overlaid on other

data sets to determine if a relationship exists between the

identified ‘‘hot spots’’ of high risk and areas of land loss. As

such, this information can be used to aid restoration decision

making and to further investigate causes of marsh degradation

experienced in this study area.

The cluster and outlier analysis involved identifying clusters

of features with similar values (in this case the three class

values, low, medium, and high risk), as well as spatial outliers,

using ArcGIS 9.3 to calculate a local Moran’s I value, a Z score,

a p-value, and a code representing the cluster type for each

feature. The output data set was queried for all areas

corresponding to the high risk of loss class, and subsequently

only high-risk areas that were significantly clustered were

selected. The resulting selections were output as a separate

feature layer and overlaid on the marsh vulnerability map

(Figure 5).

Overlay of Marsh Vulnerability Map with
TEK-Derived Maps

GIS overlay, selection by attribute and location, and

intersection operations were applied to the derived spatial

data sets (clustered high-risk areas for loss, the TEK-based

areas of observed change, and the TEK-based areas of

restoration priority data layers) to generate detailed maps

highlighting areas of high risk that also represent high

restoration priorities for the community. This analysis was

driven by three criteria: knowledge about risk of land loss

derived from scientific data and analyses; knowledge of

community-based priorities for continued sustainability; and
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knowledge of observed change at these priority areas as it

relates to the effect on natural resources and ecosystem health

on which the community relies. This GIS analysis allowed the

researchers to identify areas of concern, explore different

criteria for selection of the most suitable areas for restoration,

and rank areas at risk with regard to community concern

within a geographical context. The final output consists of a set

of digital maps showing optimal areas for strategic coastal

restoration activities based on the criteria selected. As an

example, the specific criteria for the final map shown in

Figure 6 were: (1) areas that corresponded to the most

important restoration priority (RP) class; (2) areas that

corresponded to both the extreme negative and negative

observed change (OC) classes; and (3) areas that were

identified as significantly clustered in high risk for loss. When

the criteria of the OC input were changed to include only areas

of extreme negative observed change, the final map that

resulted was modified to show only the clustered high risk of

loss areas that met the new criteria. This modification of the

input criteria narrowed the output selection areas to the

immediate vicinity of Grand Bayou Village. The selected areas

were exported to a new data layer so that this information can

be used with other maps and data sets. These selected areas

identify where there is an urgent need for restoration or other

conservation action, and where the greatest restoration

benefits for the community can be achieved for a fixed level of

available financial resources.

DISCUSSION

Land loss in the study area was persistent through all time

periods observed. There are many driving factors contributing

to the land loss detailed in this study, including: naturally

occurring subsidence; implementation of the Mississippi River

levee system, which halted the river’s seasonal overbank

flooding that naturally deposited sediment to counteract

subsidence; and the construction of a network of oilfield canals

into the project area (Boshart and MacInnes, 2000). Also, a

major factor of land loss for this area can be attributed to the

periodic impacts of storms such as those listed in Table 2,

which, according to the related TEK collected, uprooted

vegetation and formed areas of broken marsh. The new inlets

and expanded waterways allowed increasing tidal exchange

and greater salinity fluctuations, which created a stressful

habitat for historical vegetation that was less tolerant of these

conditions. The degraded vegetation cover further contributed

to wetland loss by facilitating erosion (Weller, 1994). Thus,

weaker marsh areas eroded more easily with regular tidal

action or occasional tropical storm activity.

The majority of the land loss in the study area over the time

period studied occurred prior to 1991. The greatest amount of

land loss in this area for the time periods studied was observed

from 1979 to 1991. Rates of land loss dropped dramatically after

1991 and remained relatively stable in the time periods

observed through 2005. The land lost between 2005 and 2009

indicated a slight increase in the trend of land loss observed for

the previous three time periods beginning in 1991. These land-

loss trends are reflected in the graph of proportion of total land

area to total water area over the time periods studied

(Figure 4). Based on the detailed land-change analysis, it was

determined that the study area has undergone a complex

morphological evolution that includes large core areas of once-

Figure 5. (A) Significantly clustered marsh areas of high risk to loss

overlaid on the marsh vulnerability map produced using the results of the

biophysical and fragmentation data set analyses. (B) Map showing

significantly clustered marsh areas of high risk to loss enlarged to the

vicinity of Grand Bayou Village.

Figure 6. Map result for a query of the integrated GIS showing clustered

high risk for loss marsh areas that are within areas of any TEK-based

negative OC and the TEK-based most important RP.
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unbroken marsh being perforated with small ponds, leading to

a significant increase in broken or patchy marsh areas that

eventually were lost to open water. This fragmentation and loss

pattern was observed throughout the time period investigated.

The land-change assessment methods developed for this

study provide the most detailed assessment of landscape

evolution to current conditions for this area as a basis for a

multi–data set integrated restoration decision-support system.

This model provides restoration managers with a means by

which to introduce landscape pattern and marsh biophysical

parameters associated with plant health into a discussion that

is now typically dominated by statistics on the amount of land

lost for a given area. The model used to create the marsh

vulnerability map can be used to evaluate an area in detail for

restoration potential. This methodology demonstrates how

scientific field sampling data can be effectively merged within a

GIS with information on landscape pattern and trends in order

to make marsh vulnerability projections within a spatial

context. Furthermore, this methodology is presented as a

flexible tool within an image-processing/GIS environment that

allows for biophysical and landscape fragmentation variables

to be adapted or replaced according to a particular user’s needs

and the availability of data sets related to these two variables.

Community-based indices that are calculated from numer-

ically coded TEK themes provide a data set that can be used to

create a GIS to map locations and features and to represent

their associated attributes as derived from TEK. This TEK

mapping method allows for a straightforward verification by

the informants of the ways in which the TEK was used in this

study in a format that facilitates easy assessment. The map

format is also conducive to inclusion and integration of TEK

into the restoration decision-making process. Currently, TEK

is not utilized in restoration planning or adaptive management

of current restoration projects. This is due, in part, to a lack of

understanding on the part of restoration scientists and

engineers of ways in which qualitative TEK data sets can be

integrated with quantitative data to support restoration

decision making. The coding methods and TEK mapping

products produced in this study provide a repeatable solution

for incorporating the wealth of local knowledge with scientific

data sets, including the historical and projected land-loss maps

derived with geospatial technologies that are currently used by

restoration managers and scientists.

To ensure acceptance of the TEK/scientific data integration

methods produced in this study, the researchers attempted to

address typical scientific concerns while incorporating TEK.

First, this research ensured that the TEK information obtained

for this study involved repeated observations of field sites by

several different individual informants to reduce the impact of

any information bias. As a result, the information obtained

from any one informant did not dominate the ‘‘coded’’

information that was mapped and integrated with the scientific

data collected.

Second, TEK data verification and validation procedures

were included in the data-collection and integration methods

developed for this study. These procedures included meeting

with the informants interviewed to review recorded and

summarized information from which subsequent inferences

were drawn regarding project questions. This was done to

ensure that the TEK was recorded and interpreted accurately

during the interviews. Verification and validation exercises

also served as opportunities for the research team to show the

community informants the scientific data and TEK collected,

thus providing transparency in our efforts.

Third, although the methods developed in this study focus on

blending the TEK of the Grand Bayou community informants

with scientific data sets, these methods are generally ‘‘repeat-

able,’’ or applicable, to any proposed or ongoing restoration

project that impacts a community where the population has a

long history of being intricately tied to the surrounding

ecosystem. This situation is the case with many of Louisiana’s

coastal fishing villages, as well as fishing communities

throughout the Gulf Coast. Thus, the integration methodology,

as proposed, is not specific to Grand Bayou and can be applied

to other areas with similar issues.

Last, in working with the residents as collaborators on this

project, they have become more familiar with the capabilities

and limitations of remotely sensed imagery, and thus are able

to make more informed recommendations based on this

technology. Every time the researchers visited Grand Bayou,

maps generated from remotely sensed imagery were left with

the residents, and the researchers made an effort to explain

how the maps were produced. The researchers have also

fostered a relationship between community residents and the

collaborating OCPR scientists associated with monitoring the

study area. This relationship was nonexistent prior to this

study.

Sources of Possible Error

There are small areas of land gain in the land-change maps

throughout the time frame studied. This land gain is most

likely due to sediment reworking during storm events and the

deposition of wrack material, which fills up small ponds and

previously shallow submerged areas. There could also be some

classification errors due to the presence of aquatic vegetation,

such as water hyacinth, as land; however, all images used were

acquired during fall through early spring to minimize the

presence of floating aquatic vegetation that would have caused

confusion in land/water discrimination (Barras et al., 2003).

There are also errors with land-water classifications resulting

from sun glint and image data-quality issues, which likely

contribute to some misclassification of land gain.

The chlorophyll meter and LAI measurements were collected

late in the growing season (late October to early November) at a

time when natural senescence was occurring in the marsh

vegetation. This time frame was not ideal for data collection

related to marsh health, given that vegetative stress measured

could be due to natural plant phenology in this area. For

reasons beyond the control of the research team, image data

acquisition was delayed until October 30, 2009, necessitating

the delay of concurrent field vegetation measurements.

The main weaknesses of the approach to modeling marsh

vulnerability suggested in this research include: the difficulty

of separating the correlation between marsh vulnerability and

the parameters tested from causality of loss; the difficulty of

determining the direction of causality; and the limitations

inherent in integrating only chlorophyll content, LAI, and
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landscape fragmentation characteristics into a model for marsh

vulnerability, while ignoring other variables that possibly play

key roles in the land-loss process. This analysis therefore only

provides a prediction of vulnerability from three specific input

data sets related to marsh vegetative health, spatial orienta-

tion, and proximity to water, an approach which should be

complemented by other relevant data sets before a comprehen-

sive understanding of marsh vulnerability to loss for this area

can be achieved. Other data sets currently collected and used in

the restoration decision-making process that could prove useful

for inclusion into this model include hydrologic information

related to salinity, water level, turbidity, etc. However, the

model developed in this analysis allows for the inclusion of

additional variables representing key influences in land

change in future marsh vulnerability analyses.

The TEK-based indices were created in order to increase

accessibility of this TEK data to restoration decision makers.

Following input from collaborating OCPR scientists, it was

determined that a visual representation of observed land-loss

and priority restoration areas would be more likely utilized in

the current restoration process than similar information in text

format. The researchers were privileged to witness elaborate,

multidimensional storytelling, much of which comprised the

TEK collection. We do not propose to represent this traditional

practice of storytelling or encompass the complete wealth of

TEK collected within these maps, but rather to bridge the gap

between the restoration decision-making process and TEK by

representing two important community-based attributes (ob-

served change and restoration priority) about features and

locations that emerged from the TEK.

Suggestions for Future Research

The development of the methods and GIS tools implemented

in this study and the improved understanding of the ways in

which TEK can be merged with scientific data sets to inform

restoration decision making illustrate that numerous unan-

swered questions regarding benefit and cost aspects of

knowledge integration and application for coastal restoration

exist. Moreover, in order to fully test and further develop the

methods and mapping products presented in this study, the

results should be applied to other vulnerable coastal ecosys-

tems that serve as livelihood bases for coastal communities.

The following is a summary of proposed future directions that

might expand upon the findings of this study:

(1) Continuing detailed monitoring of the morphology of the

Grand Bayou area is needed in order to determine

effectiveness and impacts of the current and proposed

restoration projects on the ecosystem, to better under-

stand long-term versus short-term (i.e., episodic storm

related) land-loss trends, and to document changes for

comparison to projected vulnerability identified in this

research.

(2) Possible major causes of land loss identified in this study

should be monitored, including oil canals, through

subsequent research focusing on future data collection

and analyses in an effort to quantify their effects.

(3) Incorporation of economic analyses is needed to deter-

mine the cost/benefit ratio associated with incorporating

this type of integrated data set into the current process as

a means of justifying the additional time and cost, which

may preclude it from being utilized more frequently by

restoration scientists. If supportive results can be

achieved, there will be a compelling precedent for

scientists to view more favorably utilizing such a method.

(4) New data sets of the marsh biophysical parameters from

field data acquired during the peak of the growing season

should be integrated, and then the marsh biophysical

estimated mapping process should be repeated to include

the new data sets. This will allow for comparison with the

biophysical mapping results of this study and may

improve the assessment of relative marsh health for

inclusion into a revised vulnerability assessment.

(5) New remotely sensed data products with greater spectral

resolution should be integrated into the mapping pro-

cesses described in this study in an attempt to improve

correlation with field data. Additional research may be

facilitated by better availability and reduced cost of finer-

resolution remotely sensed satellite data as more remote-

sensing data options become available to researchers.

CONCLUSIONS

A review of the current restoration decision-support process

shows that the methodologies and GIS tools produced and used

in this study are suitable for inclusion into the project

prioritization process utilized by OCPR. In addition, the data

products generated can inform the process and influence the

results with meaningful, new information that is geared

toward meeting localized needs rather than regionally based

criteria. This study demonstrates that once hot spots of land

loss are identified on a regional scale and further prioritization

is needed for selection of restoration projects on a local level, the

information made available through the methodologies and

tools used in this study can be included with other criteria, such

as cost estimates, to make more informed restoration decisions.

Land loss in the vicinity of Grand Bayou, and throughout

coastal Louisiana, results from a complicated set of environ-

mental and anthropogenic causes, which include canal dredg-

ing; subsidence; erosion; storms; levees; and even climate

change (Bernier, Morton, and Barras, 2006; Michot, Wells, and

Kemmerer, 2004; Penland et al., 1996; Turner, 1997; Walker et

al., 1987). Because of its complexity, isolating specific causes

and trends of land loss in the study area is a daunting task

given limited funding and resources. However, an advantage of

working closely with local residents and utilizing TEK is that

the study focus can be effectively narrowed to identify the likely

major causes of local land loss and to shape the investigation

accordingly. In analyzing the TEK obtained for this study, an

emphasis was placed by the community informants on the

effects of oil company–constructed canals, which dominate the

study area today. Secondary ecological effects that resulted

from the construction of these canals are noted in the TEK as

allowing saltwater intrusion and natural hydrological flow

alteration, which in turn accelerated the land loss observed.

Furthermore, the TEK analyses identified a time line for
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observed relative land-loss change (i.e., acceleration) and

construction of the canals, allowing researchers to identify

and acquire image data sets from relevant time periods for use

in the scientific assessment of land loss.

Castillo et al. (2005) states that the ‘‘generators of scientific

knowledge must work closely with its users to identify

problems, construct ad hoc solutions, and participate in

decision-making processes ranging from the local level to that

of policy formulation’’ (p. 745) so that the results of such

research can be ‘‘turning scientific findings into actions’’

(p. 745). The methodology developed to produce the TEK-based

maps for this study demonstrates a means by which such

qualitative information can be converted into mapping prod-

ucts that are more suitable for inclusion into the existing

restoration decision-support system. Moreover, the methodol-

ogy used to gain access to the TEK utilized in creating the TEK-

based maps serves as an example of a way in which scientists

can effectively engage local communities as partners in similar

collaborative efforts. By seeking a collaborative partnership in

assessing impacts and uses, the state officials and the scientists

engaged in the restoration analyses also gain support from the

commercial and recreational users because the latter are

brought in as partners to contribute to the sustainability of

the ecosystem on which they depend.

The research team presented the results of this study as an

example of the way in which this collaborative partnership can

benefit the coastal restoration decision-support process to the

LCA S & T Board at its September 15, 2010, meeting.

Subsequently, scientists and restoration management officials

in attendance requested the integrated mapping products

resulting from this work to use in the current CWPPRA project

nominations process for restoration planning and prioritization

in the study area. The inclusion of these tools into the CWPPRA

project nominations process represents a success in achieving a

goal of this study. However, the researchers involved with this

study hope to continue to increase dialog and discussion

between the two groups, ecosystem users and scientists/

government officials, fostering mutual respect and knowledge

transfer that will be sustained beyond the term of this study. If

this goal is achieved, the Grand Bayou residents will continue

to provide OCPR with ecological insight, informed suggestions,

and critique, thus aiding the mapping process, as well as image

data set interpretation, and ultimately helping to inform the

West Pointe a la Hache restoration decision-making process for

the foreseeable future. In doing so, this effort will address the

general lack of understanding by physical scientists of the

information value that TEK offers, as well as start to bridge the

communication gap that typically exists between scientists and

traditional knowledge holders as the ecosystem is altered

through restoration projects.
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