70 research outputs found

    Managing Radical Disputes: Public Reason, the American Dream, and the Case of Same-Sex Marriage

    Get PDF
    This paper proposes that ambiguous arguments play a crucial role in the management of radical disputes in democratic deliberation. Lofty though it might be, public reason is an impoverished ideal, and its celebrated role in democratic deliberation is vastly overrated, particularly among liberal theorists. In the courts of law and in the larger world, radical disputes unfold as messy, incomplete, ambiguous arguments are proposed by parties. This does not mean that all communication between parties must break down because parties do not abide by the rules of argumentation and evidentiary reasoning. It only implies that the language of ambiguity offers possibilities for democratic deliberation that are different from those presented in the discourse on public reason. Ordinary people have strong opinions but their arguments are, more often than not, incompletely theorized - a fact that by no means indicates that such arguments are failures. We illustrate our argument by examining the ambiguous, fragmented use of American Dream talk in the debate over same-sex marriage

    Building Community Partnerships with Adults with Disabilities: A Case Study Using Narrative Literacy as a Conduit for Shared Learning

    Get PDF
    Building relationships between traditional college students and adults with disabilities is an important yet little understood aspect of civic engagement. The case study presented in this paper built one such relationship by utilizing a shared narrative project to construct an equitable collaborative experience between a set of students from Wagner College and some adults with intellectual disabilities from a community organization, Lifestyles for the Disabled. We also discuss learning outcomes of this project, which included a deeper understanding and connection between people who learn differently. David S. Gordon is Assistant Professor of Education at Wagner College in Staten Island, NY. Cyril Ghosh is Assistant Professor of Political Science and Public Affairs at Wagner College

    Selective control of molecule charge state on graphene using tip-induced electric field and nitrogen doping

    Get PDF
    The combination of graphene with molecules offers promising opportunities to achieve new functionalities. In these hybrid structures, interfacial charge transfer plays a key role in the electronic properties and thus has to be understood and mastered. Using scanning tunneling microscopy and ab initio density functional theory calculations, we show that combining nitrogen doping of graphene with an electric field allows for a selective control of the charge state in a molecular layer on graphene. On pristine graphene, the local gating applied by the tip induces a shift of the molecular levels of adsorbed molecules and can be used to control their charge state. Ab initio calculations show that under the application of an electric field, the hybrid molecule/graphene system behaves like an electrostatic dipole with opposite charges in the molecule and graphene sub-units that are found to be proportional to the electric field amplitude, which thereby controls the charge transfer. When local gating is combined with nitrogen doping of graphene, the charging voltage of molecules on nitrogen is greatly lowered. Consequently, applying the proper electric field allows one to obtain a molecular layer with a mixed charge state, where a selective reduction is performed on single molecules at nitrogen sites. The local gating applied by a tip induces a shift of the energy levels of molecules adsorbed on graphene. A team led by Jerome Lagoute at Universite Paris Diderot investigated the interplay between the charge state of molecules on pristine and doped-graphene, and the tip-induced electric fields in scanning tunneling microscopy experiments. The tip-induced electric field was found to shift the molecular levels of tetracyanoquinodimethane molecules on graphene, leading to a change of charge state at negative bias. Ab initio calculations indicated that the molecule-on-graphene hybrid structure can be regarded as an electrostatic dipole, hence the charge transfer and associated electronic charge in the molecule and graphene could be tuned by the electric field. Furthermore, inserting nitrogen atom dopants allowed shifting the energy levels of single molecules absorbed directly on the electron-donating point defects

    Biophysical characterisation of the Bcl-x pre-mRNA and binding specificity of the ellipticine derivative GQC-05 : implication for alternative splicing regulation

    Get PDF
    The BCL2L1 gene expresses two isoforms of Bcl-x protein via the use of either of two alternative 5′ splice sites (5′ss) in exon 2. These proteins have antagonistic actions, Bcl-XL being anti-apoptotic and Bcl-XS pro-apoptotic. In a number of cancers the Bcl-XL isoform is over-expressed, resulting in cancer cell survival and growth, so switching splicing to the Xs isoform could have therapeutic benefits. We have previously proposed that a putative G-quadruplex (G4) exists downstream of the XS 5′ss and shown that the ellipticine derivative GQC-05, a previously identified DNA G4-specific ligand, induces an increase in the XS/XL ratio both in vitro and in cells. Here, we demonstrate that this G4 forms in vitro and that the structure is stabilised in the presence of GQC-05. We also show that GQC-05 binds RNA non-specifically in buffer conditions, but selectively to the Bcl-x G4 in the presence of nuclear extract, highlighting the limitations of biophysical measurements taken outside of a functional environment. We also demonstrate that GQC-05 is able to shift the equilibrium between competing G4 and duplex structures towards the G4 conformation, leading to an increase in accessibility of the XS 5′ss, supporting our previous model on the mechanism of action of GQC-05

    The Next-to-Minimal Supersymmetric Standard Model

    Full text link
    We review the theoretical and phenomenological aspects of the Next-to-Minimal Supersymmetric Standard Model: the Higgs sector including radiative corrections and the 2-loop beta-functions for all parameters of the general NMSSM; the tadpole and domain wall problems, baryogenesis; NMSSM phenomenology at colliders, B physics and dark matter; specific scenarios as the constrained NMSSM, Gauge Mediated Supersymmetry Breaking, U(1)'-extensions, CP and R-parity violation.Comment: 144 pages, 11 figures, corrections in Eqs.(2.2), (2.21), (B.9

    Can chemical and molecular biomarkers help discriminate between industrial, rural and urban environments?

    Get PDF
    Abstract Air samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3 l) were collected every 2 h for a total of 6 h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170 μg m−3 in summer and 20–250 μg m−3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297 ng m−3) and in winter the park (11,724 ng m−3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds

    Evolution of cosmological perturbations in non-singular string cosmologies

    Full text link
    In a class of non-singular cosmologies derived from higher-order corrections to the low-energy bosonic string action, we derive evolution equations for the most general cosmological scalar, vector and tensor perturbations. In the large scale limit, the evolutions of both scalar and tensor perturbations are characterised by conserved quantities, the usual curvature perturbation in the uniform-field gauge and the tensor-type perturbed metric. The vector perturbation is not affected, being described by the conservation of the angular momentum of the fluid component in the absence of any additional dissipative process. For the scalar- and tensor-type perturbations, we show how, given a background evolution during kinetic driven inflation of the dilaton field, we can obtain the final power spectra generated from the vacuum quantum fluctuations of the metric and the dilaton field during the inflation.Comment: 11 pages, 2 figures, submitted to Phys. Rev.

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    corecore