81 research outputs found

    Complete waveform model for compact binaries on eccentric orbits

    Get PDF
    We present a time domain waveform model that describes the inspiral-merger-ringdown (IMR) of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced inspiral evolution prescription is combined with an analytical prescription for the merger-ringdown evolution using a catalog of numerical relativity simulations. This IMR waveform model reproduces effective-one-body waveforms for systems with mass-ratios between 1 to 15 in the zero eccentricity limit. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our eccentric model accurately reproduces the features of eccentric compact binary coalescence throughout the merger. Using this model we show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasi-circular, spin-aligned waveforms if the eccentricity e0e_0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW1509140.15e_0^{\rm GW150914}\leq0.15 and e0GW1512260.1e_0^{\rm GW151226}\leq0.1

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio

    Pratos e mais pratos: louças domésticas, divisões culturais e limites sociais no Rio de Janeiro, século XIX

    Get PDF
    Reply to ten comments on a paper published in the last issue of this journal. The discussion follows along six main lines: History museums, identity, ideology and the category of nation; the need of material collections and their modalities: patrimonial, operational, virtual; theater versus laboratory; visitors and their ambiguities; Public History: the museum and the academy.Resposta aos comentários de dez especialistas que contribuíram no debate de texto publicado no último número desta revista. A discussão orientou-se segundo seis tópicos principais: museus históricos, identidade, ideologia e a categoria de nação; a necessidade de acervos materiais e suas modalidades: acervo patrimonial, operacional, virtual; teatro versus laboratório; o público e suas ambigüidades; História Pública: o museu e a Academia

    Tests of General Relativity with GW150914

    Get PDF
    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant’s mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013  km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity

    An improved analysis of GW150914 using a fully spin-precessing waveform model

    Get PDF
    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) on September 14, 2015 [1]. Reference presented parameter estimation [2] of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and a 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [2], and we quote updated component masses of 353+5M35^{+5}_{-3}\mathrm{M}_\odot and 304+3M30^{+3}_{-4}\mathrm{M}_\odot (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate 0.650.65 and a secondary spin estimate 0.750.75 at 90% probability. Reference [2] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted

    Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    Get PDF
    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations – including sources with two independent, precessing spins – we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC-PE[1] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz ∈ [64M� − 82M�], mass ratio 1/q = m2/m1 ∈ [0.6, 1], and effective aligned spin χeff ∈ [−0.3, 0.2], where χeff = (S1/m1 + S2/m2) · Lˆ /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components’ spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed followup calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole’s redshifted mass is consistent with Mf,z in the range 64.0M� − 73.5M� and the final black hole’s dimensionless spin parameter is consistent with af = 0.62 − 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC-PE[1]

    Effects of waveform model systematics on the interpretation of GW150914

    Get PDF
    PAPER Effects of waveform model systematics on the interpretation of GW150914 B P Abbott1, R Abbott1, T D Abbott2, M R Abernathy3, F Acernese4,5, K Ackley6, C Adams7, T Adams8, P Addesso9,144, R X Adhikari1, V B Adya10, C Affeldt10, M Agathos11, K Agatsuma11, N Aggarwal12, O D Aguiar13, L Aiello14,15, A Ain16, P Ajith17, B Allen10,18,19, A Allocca20,21, P A Altin22, A Ananyeva1, S B Anderson1, W G Anderson18, S Appert1, K Arai1, M C Araya1, J S Areeda23, N Arnaud24, K G Arun25, S Ascenzi15,26, G Ashton10, M Ast27, S M Aston7, P Astone28, P Aufmuth19, C Aulbert10, A Avila-Alvarez23, S Babak29, P Bacon30, M K M Bader11, P T Baker31, F Baldaccini32,33, G Ballardin34, S W Ballmer35, J C Barayoga1, S E Barclay36, B C Barish1, D Barker37, F Barone4,5, B Barr36, L Barsotti12, M Barsuglia30, D Barta38, J Bartlett37, I Bartos39, R Bassiri40, A Basti20,21, J C Batch37, C Baune10, V Bavigadda34, M Bazzan41,42, C Beer10, M Bejger43, I Belahcene24, M Belgin44, A S Bell36, B K Berger1, G Bergmann10, C P L Berry45, D Bersanetti46,47, A Bertolini11, J Betzwieser7, S Bhagwat35, R Bhandare48, I A Bilenko49, G Billingsley1, C R Billman6, J Birch7, R Birney50, O Birnholtz10, S Biscans1,12, A Bisht19, M Bitossi34, C Biwer35, M A Bizouard24, J K Blackburn1, J Blackman51, C D Blair52, D G Blair52, R M Blair37, S Bloemen53, O Bock10, M Boer54, G Bogaert54, A Bohe29, F Bondu55, R Bonnand8, B A Boom11, R Bork1, V Boschi20,21, S Bose16,56, Y Bouffanais30, A Bozzi34, C Bradaschia21, P R Brady18, V B Braginsky49,145, M Branchesi57,58, J E Brau59, T Briant60, A Brillet54, M Brinkmann10, V Brisson24, P Brockill18, J E Broida61, A F Brooks1, D A Brown35, D D Brown45, N M Brown12, S Brunett1, C C Buchanan2, A Buikema12, T Bulik62, H J Bulten11,63, A Buonanno29,64, D Buskulic8, C Buy30, R L Byer40, M Cabero10, L Cadonati44, G Cagnoli65,66, C Cahillane1, J Calderón Bustillo44, T A Callister1, E Calloni5,67, J B Camp68, K C Cannon69, H Cao70, J Cao71, C D Capano10, E Capocasa30, F Carbognani34, S Caride72, J Casanueva Diaz24, C Casentini15,26, S Caudill18, M Cavaglià73, F Cavalier24, R Cavalieri34, G Cella21, C B Cepeda1, L Cerboni Baiardi57,58, G Cerretani20,21, E Cesarini15,26, S J Chamberlin74, M Chan36, S Chao75, P Charlton76, E Chassande-Mottin30, B D Cheeseboro31, H Y Chen77, Y Chen51, H-P Cheng6, A Chincarini47, A Chiummo34, T Chmiel78, H S Cho79, M Cho64, J H Chow22, N Christensen61, Q Chu52, A J K Chua80, S Chua60, S Chung52, G Ciani6, F Clara37, J A Clark44, F Cleva54, C Cocchieri73, E Coccia14,15, P-F Cohadon60, A Colla28,81, C G Collette82, L Cominsky83, M Constancio Jr13, L Conti42, S J Cooper45, T R Corbitt2, N Cornish84, A Corsi72, S Cortese34, C A Costa13, M W Coughlin61, S B Coughlin85, J-P Coulon54, S T Countryman39, P Couvares1, P B Covas86, E E Cowan44, D M Coward52, M J Cowart7, D C Coyne1, R Coyne72, J D E Creighton18, T D Creighton87, J Cripe2, S G Crowder88, T J Cullen23, A Cumming36, L Cunningham36, E Cuoco34, T Dal Canton68, S L Danilishin36, S D'Antonio15, K Danzmann10,19, A Dasgupta89, C F Da Silva Costa6, V Dattilo34, I Dave48, M Davier24, G S Davies36, D Davis35, E J Daw90, B Day44, R Day34, S De35, D DeBra40, G Debreczeni38, J Degallaix65, M De Laurentis5,67, S Deléglise60, W Del Pozzo45, T Denker10, T Dent10, V Dergachev29, R De Rosa5,67, R T DeRosa7, R DeSalvo91, J Devenson50, R C Devine31, S Dhurandhar16, M C Díaz87, L Di Fiore5, M Di Giovanni92,93, T Di Girolamo5,67, A Di Lieto20,21, S Di Pace28,81, I Di Palma28,29,81, A Di Virgilio21, Z Doctor77, V Dolique65, F Donovan12, K L Dooley73, S Doravari10, I Dorrington94, R Douglas36, M Dovale Álvarez45, T P Downes18, M Drago10, R W P Drever1,146, J C Driggers37, Z Du71, M Ducrot8, S E Dwyer37, T B Edo90, M C Edwards61, A Effler7, H-B Eggenstein10, P Ehrens1, J Eichholz1, S S Eikenberry6, R A Eisenstein12, R C Essick12, Z Etienne31, T Etzel1, M Evans12, T M Evans7, R Everett74, M Factourovich39, V Fafone14,15,26, H Fair35, S Fairhurst94, X Fan71, S Farinon47, B Farr77, W M Farr45, E J Fauchon-Jones94, M Favata95, M Fays94, H Fehrmann10, M M Fejer40, A Fernández Galiana12, I Ferrante20,21, E C Ferreira13, F Ferrini34, F Fidecaro20,21, I Fiori34, D Fiorucci30, R P Fisher35, R Flaminio65,96, M Fletcher36, H Fong97, S S Forsyth44, J-D Fournier54, S Frasca28,81, F Frasconi21, Z Frei98, A Freise45, R Frey59, V Frey24, E M Fries1, P Fritschel12, V V Frolov7, P Fulda6,68, M Fyffe7, H Gabbard10, B U Gadre16, S M Gaebel45, J R Gair99, L Gammaitoni32, S G Gaonkar16, F Garufi5,67, G Gaur100, V Gayathri101, N Gehrels68, G Gemme47, E Genin34, A Gennai21, J George48, L Gergely102, V Germain8, S Ghonge17, Abhirup Ghosh17, Archisman Ghosh11,17, S Ghosh11,53, J A Giaime2,7, K D Giardina7, A Giazotto21, K Gill103, A Glaefke36, E Goetz10, R Goetz6, L Gondan98, G González2, J M Gonzalez Castro20,21, A Gopakumar104, M L Gorodetsky49, S E Gossan1, M Gosselin34, R Gouaty8, A Grado5,105, C Graef36, M Granata65, A Grant36, S Gras12, C Gray37, G Greco57,58, A C Green45, P Groot53, H Grote10, S Grunewald29, G M Guidi57,58, X Guo71, A Gupta16, M K Gupta89, K E Gushwa1, E K Gustafson1, R Gustafson106, J J Hacker23, B R Hall56, E D Hall1, G Hammond36, M Haney104, M M Hanke10, J Hanks37, C Hanna74, M D Hannam94, J Hanson7, T Hardwick2, J Harms57,58, G M Harry3, I W Harry29, M J Hart36, M T Hartman6, C-J Haster45,97, K Haughian36, J Healy107, A Heidmann60, M C Heintze7, H Heitmann54, P Hello24, G Hemming34, M Hendry36, I S Heng36, J Hennig36, J Henry107, A W Heptonstall1, M Heurs10,19, S Hild36, D Hoak34, D Hofman65, K Holt7, D E Holz77, P Hopkins94, J Hough36, E A Houston36, E J Howell52, Y M Hu10, E A Huerta108, D Huet24, B Hughey103, S Husa86, S H Huttner36, T Huynh-Dinh7, N Indik10, D R Ingram37, R Inta72, H N Isa36, J-M Isac60, M Isi1, T Isogai12, B R Iyer17, K Izumi37, T Jacqmin60, K Jani44, P Jaranowski109, S Jawahar110, F Jiménez-Forteza86, W W Johnson2, D I Jones111, R Jones36, R J G Jonker11, L Ju52, J Junker10, C V Kalaghatgi94, V Kalogera85, S Kandhasamy73, G Kang79, J B Kanner1, S Karki59, K S Karvinen10, M Kasprzack2, E Katsavounidis12, W Katzman7, S Kaufer19, T Kaur52, K Kawabe37, F Kéfélian54, D Keitel86, D B Kelley35, R Kennedy90, J S Key112, F Y Khalili49, I Khan14, S Khan94, Z Khan89, E A Khazanov113, N Kijbunchoo37, Chunglee Kim114, J C Kim115, Whansun Kim116, W Kim70, Y-M Kim114,117, S J Kimbrell44, E J King70, P J King37, R Kirchhoff10, J S Kissel37, B Klein85, L Kleybolte27, S Klimenko6, P Koch10, S M Koehlenbeck10, S Koley11, V Kondrashov1, A Kontos12, M Korobko27, W Z Korth1, I Kowalska62, D B Kozak1, C Krämer10, V Kringel10, B Krishnan10, A Królak118,119, G Kuehn10, P Kumar97, R Kumar89, L Kuo75, A Kutynia118, B D Lackey29,35, M Landry37, R N Lang18, J Lange107, B Lantz40, R K Lanza12, A Lartaux-Vollard24, P D Lasky120, M Laxen7, A Lazzarini1, C Lazzaro42, P Leaci28,81, S Leavey36, E O Lebigot30, C H Lee117, H K Lee121, H M Lee114, K Lee36, J Lehmann10, A Lenon31, M Leonardi92,93, J R Leong10, N Leroy24, N Letendre8, Y Levin120, T G F Li122, A Libson12, T B Littenberg123, J Liu52, N A Lockerbie110, A L Lombardi44, L T London94, J E Lord35, M Lorenzini14,15, V Loriette124, M Lormand7, G Losurdo21, J D Lough10,19, G Lovelace23, H Lück10,19, A P Lundgren10, R Lynch12, Y Ma51, S Macfoy50, B Machenschalk10, M MacInnis12, D M Macleod2, F Magaña-Sandoval35, E Majorana28, I Maksimovic124, V Malvezzi15,26, N Man54, V Mandic125, V Mangano36, G L Mansell22, M Manske18, M Mantovani34, F Marchesoni33,126, F Marion8, S Márka39, Z Márka39, A S Markosyan40, E Maros1, F Martelli57,58, L Martellini54, I W Martin36, D V Martynov12, K Mason12, A Masserot8, T J Massinger1, M Masso-Reid36, S Mastrogiovanni28,81, F Matichard1,12, L Matone39, N Mavalvala12, N Mazumder56, R McCarthy37, D E McClelland22, S McCormick7, C McGrath18, S C McGuire127, G McIntyre1, J McIver1, D J McManus22, T McRae22, S T McWilliams31, D Meacher54,74, G D Meadors10,29, J Meidam11, A Melatos128, G Mendell37, D Mendoza-Gandara10, R A Mercer18, E L Merilh37, M Merzougui54, S Meshkov1, C Messenger36, C Messick74, R Metzdorff60, P M Meyers125, F Mezzani28,81, H Miao45, C Michel65, H Middleton45, E E Mikhailov129, L Milano5,67, A L Miller6,28,81, A Miller85, B B Miller85, J Miller12, M Millhouse84, Y Minenkov15, J Ming29, S Mirshekari130, C Mishra17, S Mitra16, V P Mitrofanov49, G Mitselmakher6, R Mittleman12, A Moggi21, M Mohan34, S R P Mohapatra12, M Montani57,58, B C Moore95, C J Moore80, D Moraru37, G Moreno37, S R Morriss87, B Mours8, C M Mow-Lowry45, G Mueller6, A W Muir94, Arunava Mukherjee17, D Mukherjee18, S Mukherjee87, N Mukund16, A Mullavey7, J Munch70, E A M Muniz23, P G Murray36, A Mytidis6, K Napier44, I Nardecchia15,26, L Naticchioni28,81, G Nelemans11,53, T J N Nelson7, M Neri46,47, M Nery10, A Neunzert106, J M Newport3, G Newton36, T T Nguyen22, A B Nielsen10, S Nissanke11,53, A Nitz10, A Noack10, F Nocera34, D Nolting7, M E N Normandin87, L K Nuttall35, J Oberling37, E Ochsner18, E Oelker12, G H Ogin131, J J Oh116, S H Oh116, F Ohme10,94, M Oliver86, P Oppermann10, Richard J Oram7, B O'Reilly7, R O'Shaughnessy107, D J Ottaway70, H Overmier7, B J Owen72, A E Pace74, J Page123, A Pai101, S A Pai48, J R Palamos59, O Palashov113, C Palomba28, A Pal-Singh27, H Pan75, C Pankow85, F Pannarale94, B C Pant48, F Paoletti21,34, A Paoli34, M A Papa10,18,29, H R Paris40, W Parker7, D Pascucci36, A Pasqualetti34, R Passaquieti20,21, D Passuello21, B Patricelli20,21, B L Pearlstone36, M Pedraza1, R Pedurand65,132, L Pekowsky35, A Pele7, S Penn133, C J Perez37, A Perreca1, L M Perri85, H P Pfeiffer97, M Phelps36, O J Piccinni28,81, M Pichot54, F Piergiovanni57,58, V Pierro9, G Pillant34, L Pinard65, I M Pinto9, M Pitkin36, M Poe18, R Poggiani20,21, P Popolizio34, A Post10, J Powell36, J Prasad16, J W W Pratt103, V Predoi94, T Prestegard18,125, M Prijatelj10,34, M Principe9, S Privitera29, G A Prodi92,93, L G Prokhorov49, O Puncken10, M Punturo33, P Puppo28, M Pürrer29, H Qi18, J Qin52, S Qiu120, V Quetschke87, E A Quintero1, R Quitzow-James59, F J Raab37, D S Rabeling22, H Radkins37, P Raffai98, S Raja48, C Rajan48, M Rakhmanov87, P Rapagnani28,81, V Raymond29, M Razzano20,21, V Re26, J Read23, T Regimbau54, L Rei47, S Reid50, D H Reitze1,6, H Rew129, S D Reyes35, E Rhoades103, F Ricci28,81, K Riles106, M Rizzo107, N A Robertson1,36, R Robie36, F Robinet24, A Rocchi15, L Rolland8, J G Rollins1, V J Roma59, J D Romano87, R Romano4,5, J H Romie7, D Rosińska43,134, S Rowan36, A Rüdiger10, P Ruggi34, K Ryan37, S Sachdev1, T Sadecki37, L Sadeghian18, M Sakellariadou135, L Salconi34, M Saleem101, F Salemi10, A Samajdar136, L Sammut120, L M Sampson85, E J Sanchez1, V Sandberg37, J R Sanders35, B Sassolas65, B S Sathyaprakash74,94, P R Saulson35, O Sauter106, R L Savage37, A Sawadsky19, P Schale59, J Scheuer85, E Schmidt103, J Schmidt10, P Schmidt1,51, R Schnabel27, R M S Schofield59, A Schönbeck27, E Schreiber10, D Schuette10,19, B F Schutz29,94, S G Schwalbe103, J Scott36, S M Scott22, D Sellers7, A S Sengupta137, D Sentenac34, V Sequino15,26, A Sergeev113, Y Setyawati11,53, D A Shaddock22, T J Shaffer37, M S Shahriar85, B Shapiro40, P Shawhan64, A Sheperd18, D H Shoemaker12, D M Shoemaker44, K Siellez44, X Siemens18, M Sieniawska43, D Sigg37, A D Silva13, A Singer1, L P Singer68, A Singh10,19,29, R Singh2, A Singhal14, A M Sintes86, B J J Slagmolen22, B Smith7, J R Smith23, R J E Smith1, E J Son116, B Sorazu36, F Sorrentino47, T Souradeep16, A P Spencer36, A K Srivastava89, A Staley39, M Steinke10, J Steinlechner36, S Steinlechner27,36, D Steinmeyer10,19, B C Stephens18, S P Stevenson45, R Stone87, K A Strain36, N Straniero65, G Stratta57,58, S E Strigin49, R Sturani130, A L Stuver7, T Z Summerscales138, L Sun128, S Sunil89, P J Sutton94, B L Swinkels34, M J Szczepańczyk103, M Tacca30, D Talukder59, D B Tanner6, M Tápai102, A Taracchini29, R Taylor1, T Theeg10, E G Thomas45, M Thomas7, P Thomas37, K A Thorne7, E Thrane120, T Tippens44, S Tiwari14,93, V Tiwari94, K V Tokmakov110, K Toland36, C Tomlinson90, M Tonelli20,21, Z Tornasi36, C I Torrie1, D Töyrä45, F Travasso32,33, G Traylor7, D Trifirò73, J Trinastic6, M C Tringali92,93, L Trozzo21,139, M Tse12, R Tso1, M Turconi54, D Tuyenbayev87, D Ugolini140, C S Unnikrishnan104, A L Urban1, S A Usman94, H Vahlbruch19, G Vajente1, G Valdes87, N van Bakel11, M van Beuzekom11, J F J van den Brand11,63, C Van Den Broeck11, D C Vander-Hyde35, L van der Schaaf11, J V van Heijningen11, A A van Veggel36, M Vardaro41,42, V Varma51, S Vass1, M Vasúth38, A Vecchio45, G Vedovato42, J Veitch45, P J Veitch70, K Venkateswara141, G Venugopalan1, D Verkindt8, F Vetrano57,58, A Viceré57,58, A D Viets18, S Vinciguerra45, D J Vine50, J-Y Vinet54, S Vitale12, T Vo35, H Vocca32,33, C Vorvick37, D V Voss6, W D Vousden45, S P Vyatchanin49, A R Wade1, L E Wade78, M Wade78, M Walker2, L Wallace1, S Walsh10,29, G Wang14,58, H Wang45, M Wang45, Y Wang52, R L Ward22, J Warner37, M Was8, J Watchi82, B Weaver37, L-W Wei54, M Weinert10, A J Weinstein1, R Weiss12, L Wen52, P Weßels10, T Westphal10, K Wette10, J T Whelan107, B F Whiting6, C Whittle120, D Williams36, R D Williams1, A R Williamson94, J L Willis142, B Willke10,19, M H Wimmer10,19, W Winkler10, C C Wipf1, H Wittel10,19, G Woan36, J Woehler10, J Worden37, J L Wright36, D S Wu10, G Wu7, W Yam12, H Yamamoto1, C C Yancey64, M J Yap22, Hang Yu12, Haocun Yu12, M Yvert8, A Zadrożny118, L Zangrando42, M Zanolin103, J-P Zendri42, M Zevin85, L Zhang1, M Zhang129, T Zhang36, Y Zhang107, C Zhao52, M Zhou85, Z Zhou85, S J Zhu10,29, X J Zhu52, M E Zucker1,12, J Zweizig1 (LIGO Scientific Collaboration, Virgo Collaboration), M Boyle143, T Chu97, D Hemberger51, I Hinder29, L E Kidder143, S Ossokine29, M Scheel51, B Szilagyi51, S Teukolsky143 and A Vano Vinuales94 Hide full author list Published 12 April 2017 • © 2017 IOP Publishing Ltd Classical and Quantum Gravity, Volume 34, Number 10 Focus Issue: Gravitational Waves Article PDF Figures References Citations PDF 258 Total downloads Cited by 1 articles Article has an altmetric score of 3 Turn on MathJax Get permission to re-use this article Share this article Article information Abstract Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ~0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations

    Properties of the Binary Black Hole Merger GW150914

    Get PDF
    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36+5−4M⊙ and 29+4−4M⊙; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410+160−180  Mpc, corresponding to a redshift 0.09+0.03−0.04 assuming standard cosmology. The source location is constrained to an annulus section of 610  deg2, primarily in the southern hemisphere. The binary merges into a black hole of mass 62+4−4M⊙ and spin 0.67+0.05−0.07. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore