389 research outputs found

    The impact of secondary ice production on Arctic stratocumulus

    Get PDF
    In situ measurements of Arctic clouds frequently show that ice crystal number concentrations (ICNCs) are much higher than the number of available ice-nucleating particles (INPs), suggesting that secondary ice production (SIP) may be active. Here we use a Lagrangian parcel model (LPM) and a large-eddy simulation (LES) to investigate the impact of three SIP mechanisms (rime splintering, break-up from ice–ice collisions and drop shattering) on a summer Arctic stratocumulus case observed during the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. Primary ice alone cannot explain the observed ICNCs, and drop shattering is ineffective in the examined conditions. Only the combination of both rime splintering (RS) and collisional break-up (BR) can explain the observed ICNCs, since both of these mechanisms are weak when activated alone. In contrast to RS, BR is currently not represented in large-scale models; however our results indicate that this may also be a critical ice-multiplication mechanism. In general, low sensitivity of the ICNCs to the assumed INP, to the cloud condensation nuclei (CCN) conditions and also to the choice of BR parameterization is found. Finally, we show that a simplified treatment of SIP, using a LPM constrained by a LES and/or observations, provides a realistic yet computationally efficient way to study SIP effects on clouds. This method can eventually serve as a way to parameterize SIP processes in large-scale models

    UReCA, the NCHC Web journal of Undergraduate Research and Creative Activity

    Get PDF
    Our vision is an academic community without borders, a connected network of aspirational students committed to the advancement of knowledge and appreciation of the arts. UReCA fosters the exchange of intellectual and creative work between undergraduate students, providing a platform where students can engage with and contribute to the advancement of their individual fields. UReCA was first conceived by Johnny MacLean (Southern Utah University) and Brian White (Graceland University) at an annual NCHC conference in Phoenix, Arizona. MacLean and White noticed that while several academic outlets existed for honors faculty and administrators, there was an absence of student-focused publications within the NCHC community. Inspired by the experiential education model used by Partners in the Parks, Johnny and Brian saw another opportunity for honors students to engage in experiential learning. Their vision: an international undergraduate journal, peer reviewed and produced for the web by an interdisciplinary community of honors students

    A missing operationalization: entrepreneurial competencies in multinational enterprise subsidiaries

    Get PDF
    We seek to provide a comprehensive operationalization of firm-specific variables that constitute multinational enterprise subsidiary entrepreneurial competencies. Towards this objective, we bring together notions from the fields of entrepreneurship and international business. Drawing on an empirical study of 260 subsidiaries located in the UK, we propose a comprehensive set of scales encompassing innovativeness, risk-taking, proactiveness, learning, intra-multinational networking, extra-multinational networking and autonomy; which capture distinct subsidiary entrepreneurial competencies at the subsidiary level. Research and managerial implications are discussed

    Characterization of the Moraxella catarrhalis uspA1 and uspA2 Genes and Their Encoded Products

    Get PDF
    The uspA1 and uspA2 genes of M. catarrhalis O35E encode two different surface-exposed proteins which were previously shown to share a 140-amino-acid region with 93% identity (C. Aebi, I. Maciver, J. L. Latimer, L. D. Cope, M. K. Stevens, S. E. Thomas, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 65:4367–4377, 1997). The N-terminal amino acid sequences of the mature forms of both UspA1 and UspA2 from strain O35E were determined after enzymatic treatment to remove the N-terminal pyroglutamyl residue that had blocked Edman degradation. Mass spectrometric analysis indicated that the molecular mass of UspA1 from M. catarrhalis O35E was 83,500 ± 116 Da. Nucleotide sequence analysis of the uspA1 and uspA2 genes from three other M. catarrhalis strains (TTA24, ATCC 25238, and V1171) revealed that the encoded protein products were very similar to those from strain O35E. Western blot analysis was used to confirm that each of these three strains of M. catarrhalis expressed both UspA1 and UspA2 proteins. Several different and repetitive amino acid motifs were present in both UspA1 and UspA2 from these four strains, and some of these were predicted to form coiled coils. Linear DNA templates were used in an in vitro transcription-translation system to determine the sizes of the monomeric forms of the UspA1 and UspA2 proteins from strains O35E and TTA24

    Swordfish bill injury involving abdomen and vertebral column: case report and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Penetrating injuries of the abdomen and spinal canal that involve organic material of animal origin are extremely rare and derive from domestic and wild animal attacks or fish attacks.</p> <p>Case presentation</p> <p>In this case report we present the unique, as far as the literature is concerned, unprovoked woman's injury to the abdomen by a swordfish. There are only four cases of swordfish attacks on humans in the literature - one resulted to thoracic trauma, two to head trauma and one to knee trauma, one of which was fatal - none of which were unprovoked. Three victims were professional or amateur fishermen whereas in the last reported case the victim was a bather as in our case. Our case is the only case where organic debris of animal's origin remained in the spinal canal after penetrating trauma.</p> <p>Conclusions</p> <p>Although much has been written about the management of penetrating abdominal and spinal cord trauma, controversy remains about the optimal management. Moreover, there is little experience in the management of patients with such spinal injuries, due to the fact that such cases are extremely rare. In this report we focus on the patient's treatment with regard to abdominal and spinal trauma and present a review of the literature.</p

    Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy

    Get PDF
    Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore