2,123 research outputs found

    High energy from space

    Get PDF
    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues

    Optimizing interfacial features to regulate neural progenitor cells using polyelectrolyte multilayers and brain derived neurotrophic factor

    No full text
    The development of biomaterials with controllable interfacial features which have the capability to instruct cellular behavior are required to produce functional scaffolds for the treatment of spinal cord injury (SCI). Here, poly-ɛ-caprolactone surfaces were biofunctionalized via layer-by-layer (LbL) deposition. The polyelectrolytes employed in this LbL technique were heparin and poly-L-lysine (PLL), the latter being chosen to improve cell adhesion and the subsequent cellular function of in vitrocultured neural progenitor cells. Material characterization results confirmed the deposition of well structured multilayers. Cell culture studies revealed significant differences in the cellular response to these adhesive/nonadhesive (PLL/heparin) polyelectrolyte multilayer (PEM)surfaces, with neurite outgrowth being significantly promoted on the PLL terminating layers. In addition, brain derived neurotrophic factor (BDNF) was adsorbed onto the LbL surfaces. This combined chemical and biological effect was then characterized in terms of neurite length along with the full length/truncated isoform 1 tyrosine kinase receptor (TrkB-FL/TrkB-T1) and growth associated protein-43 mRNA levels. Here, the authors report the differential effect of adsorbed and soluble BDNF of different concentrations. Adsorbed BDNF promoted neurite outgrowth and led to elevated, sustained TrkB mRNA levels. These findings highlight the potential of PEM biofunctionalized surfaces with integrated chemical and neurotrophin supportive cues to overcome SCI inhibitory environments and to promote regeneration

    Moroccan rock phosphate solubilization during a thermo-anaerobic grassland waste biodegradation process

    Get PDF
    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from 6.5 to 4.8, and solubilizing from 7 to 15.8% of the phosphorus from the RP in the reactors after 90 days of incubation at 45°C. In these conditions, the organic acids produced were qualitatively and quantitatively identified as: acetic, butyric and propionic acids. This biological RP solubilization is due to the presence of a single thermo-tolerant bacterium isolated and identified as Bacillus subtilis from the anaerobic reactors. This B. subtilis strain was shown to be able to solubilize RP in liquid cultures containing insoluble RP as sole phosphate source. The mechanisms involved in these weathering processes confirmed the production of organic acids which were identified and quantified. This study is expected to lead to the development of novel, non-polluting farming practices by entering in the formulation of novel multi-functional biofertilizer by inoculating this thermo-tolerant phosphate-solubilizing bacterium into agricultural wastes as a practical and environmental strategy.Key words: Grassland, phosphate, solubilization, Bacillus subtilis, thermo-anaerobic conditions

    230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille UniversitĂ©, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791

    Removing Orbital Debris with Lasers

    Full text link
    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.Comment: 37 pages, 15 figures, in preparation for submission to Advances in Space Researc

    The Quantity Theory of Money is Valid. The New Keynesians are Wrong!

    Get PDF
    We test the quantity theory of money (QTM) using a novel approach and a large new sample. We do not follow the usual approach of first differentiating the logarithm of the Cambridge equation to obtain an equation relating the growth rate of real GDP, the growth rate of money and inflation. These variables must then again be ‘integrated’ by averaging in order to obtain stable relationships. Instead we suggest a much simpler procedure for testing directly the stability of the coefficient of the Cambridge equation. For 125 countries and post-war data we find the coefficient to be surprisingly stable. We do not select for high inflation episodes as was done in most empirical studies; inflation rates do not even appear in our data set. Much work supporting the QTM has been done by economic historians and at the University of Chicago by Milton Friedman and his associates. The QTM was a foundation stone of the monetarist revolution. Subsequently belief in it waned. The currently dominant New Keynesian School, implicitly or explicitly denies the validity of the QTM. We survey this history and argue that the QTM is valid and New Keynesians are wrong

    Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges

    Get PDF
    Important operational changes that have gradually been assimilated and new approaches that are developing as part of the movement toward sustainable intensive aquaculture production systems are presented via historical, current, and future perspectives. Improved environmental and economic sustainability based on increased efficiency of production continues to be realized. As a result, aquaculture continues to reduce its carbon footprint through reduced greenhouse gas emissions. Reduced use of freshwater and land resources per unit of production, improved feed management practices as well as increased knowledge of nutrient requirements, effective feed ingredients and additives, domestication of species, and new farming practices are now being applied or evaluated. Successful expansion into culture of marine species, both off and on shore, offers the potential of substantial increases in sustainable intensive aquaculture production combined with integrative efforts to increase efficiency will principally contribute to satisfying the increasing global demand for protein and food security needs

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains reports on four research project.U. S. Atomic Energy Commission (Contract AT(11-1)-3070

    The effect of cigarette smoke exposure on the development of inflammation in lungs, gut and joints of TNFΔARE mice

    Get PDF
    The inflammatory cytokine TNF-alpha is a central mediator in many immune-mediated diseases, such as Crohn's disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNF Delta ARE mice; in which a systemic TNF-alpha overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNF Delta ARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNF Delta ARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNF Delta ARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNF Delta ARE mice. The lung responses towards CS in TNF Delta ARE mice however depend on the duration of CS exposure
    • 

    corecore