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1. COMPARISON OF STARK-BROADENED OPTICAL LINE SHAPES

CAUSED BY HOLTSMARK AND GAUSSIAN MICROFIELDS

U. S. Atomic Energy Commission (Contract AT(11 -1)-3070)

G. Bekefi, C. Deutsch, C. Coulaud, M. Sassi

[Dr. Deutsch, Dr. Coulaud and Dr. Sassi are at the Universit6 de Paris where part
of this work was carried out.]

It is well known that the fluctuating microfield of a plasma in thermodynamic equili-

brium having many particles in a Debye sphere is well represented by the Holtsmark-

Hooper probability distribution 1 W(E). On the other hand, a thermal plasma having very

few particles in the Debye sphere, or a highly turbulent nonthermal plasma, are expected

to have a probability distribution approaching a Gaussian.2, 3 As we pointed out in our

last report, 4 a Stark-broadened optical line shape caused by a Gaussian distribution

can differ significantly from the line shape resulting from the Holtsmark-Hooper dis-

tribution. Such differences could be exploited in determining the fluctuating electric field

in nonclassical plasmas.

In this report we compare the Gaussian and Holtsmark-Hooper induced profiles for
the He 2 P-4 3D allowed line at 4471 A and the neighboring 2 3P-4 3F forbidden line at

4470 A. The effect of electron impacts is omitted throughout these computations. Fig-

ure IV-la illustrates the line profiles for a Gaussian electric field of the form 4

W(E) dE 4r E e /2 dE, (1)

where -c is the standard deviation. The curves shown in Fig. IV-la refer to three

different values of the rms electric field
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Line profiles of the He I 2 3P-4 3D allowed line at 4471 A and of the
3 3

2 P -4 F forbidden line at 4470 A. The wavelength AX = 0 on the
abscissa corresponds to the wavelength position of the unperturbed
allowed line. The total area under the combined allowed and for-

bidden lines is normalized in each case so that fJ I(X) dX = 1.

(a) Three different values of the Gaussian-distributed electric
microfield.

(b) Corresponding computations for the Holtsmark-Hooper dis-
tribution.
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E 2  E 2 W(E) dE 2 = 3-. (2)

Figure IV-1b shows corresponding computations for the Holtsmark-Hooper distribution

(note that the identical Fig. IV-3 in our last report 4 was captioned erroneously as

Gaussian, rather than Holtsmark-Hooper). The electric field values quoted in Fig. IV-lb

refer to the Holtsmark "normal" field; the rms electric field for this distribution is

infinite and thus is physically not meaningful. Comparing both parts of Fig. IV-1, we see

immediately that the Gaussian profiles (a) are much narrower and that the wings of the

lines fall off much more sharply than those for the Holtsmark-Hooper distribution (b).

The differences in the wings reflect the fact that for large electric fields W(E) of the

Gaussian distribution falls off exponentially, while W(E) of the Holtsmark-Hooper dis-

tribution falls off more slowly (as E 5/2).

In Fig. IV-2 we show the widths of the allowed and forbidden lines for the two dif-

ferent distributions W(E) and in Fig. IV-3 we show the ratio of integrated line inten-

sities. Calculations similar to those described above are now being carried out for

the case of the "one-dimensional" Gaussian distribution

W(E) dE 1 e /2 - dE

f W(E) dE 1

SE2 ) = E2 W(E) dE /2 .
o

Such a distribution is relevant for many plasmas in which the turbulence is induced by

waves propagating primarily along one direction.
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2. PULSE EVOLUTION OF SECOND-ORDER WAVE-WAVE

INTERACTIONS

U. S. Atomic Energy Commission (Contract AT(ll-1)-3070)

A. Bers, F. W. Chambers, R. J. Hawryluk

Nonlinear plasma instabilities are expected to play an important role in laser-pellet

fusion experiments. The detailed time-space evolution of such instabilities may be

significant in assessing their importance. Knowledge of the pulse evolution is also

required for properly designing small-scale experiments for observing such instabili-

ties. In this report we summarize the main features of the one-dimensional evolution

of second-order (parametric) plasma instabilities, and give illustrative calculations.

The detailed theoretical development and major results have been reported elsewhere. 2' 3

Consider the nonlinear coupling of two waves caused by the presence of a pump wave.

Let the pump wave be characterized by a fixed (normalized) amplitude a 0 , frequency

Wl , and wave number kl, and let the waves that couple be characterized, respectively,

by a 2 , W2 , k2 , and a 3 ,J 3 ,k 3 . Also, let y2 and -c, respectively, be the weak damping rate

and group velocity of wave 2, and y3 and v be the similar quantities for wave 3. The

nonlinear coupling of these waves to second-order will induce a slow time-and-space

variation of their amplitudes given2 by

a - c z + 2 a 2 (z, t) = -P 2 K a 0 a 3 (z t) (1)

at+ a ) a (zt) * ,(2

at +v 3 a3(z, t) -p 3 K a 1 0 a 2 (z, t), (2)

where p = ±1 is the energy sign (parity) of the unperturbed waves, and the coupling coef-

ficient K has been given elsewhere by Bers.2 (Computations of K for some specific

interactions were given in a previous report. 4 )

The Green's function solution of these equations is given by

L ds -istF dK iKz 1G(z,t) = e e 1 (3)
L r F 2 D(K, s)

where

D(K, s) =(s +cK+iy 2 ) (s -vK+i) + 2 (4)

is the dispersion relation, and

2 P1P2 K1 2 al 2 (5)
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is the maximum possible growth (for plP 2 > 0) rate of the interaction, which occurs when

the uncoupled waves are undamped, that is, y2 = 0 and y3 = 0. This can be established

directly from D(K, s) = 0 by solving for the maximum s i as a function of K = Kr , where

subscripts i and r designate the imaginary and real parts. Furthermore, in the

undamped case the instability is absolute when the group velocities of the two unperturbed

waves are opposite to each other, as we chose them to be in Eqs. 1 and 2. The growth

rate of this absolute instability can be found from the simultaneous solution of D(K, s) = 0

and (DD/aK) = 0. It is found to be

2 (cv) 1/20/2
0 (c+v)

Similarly, when the damping of the waves is finite we can establish the threshold for

instability as

2 A 2
'y > Y' 2'3 Y (7)

and the threshold for absolute instability as

2
2 (Y2 v + 3 c) cv 2 A 2

'Y > 4cv =4 (a2 + a3) a, (8)

where a 2 , 3 are the spatial damping rates of the uncoupled waves. For ye c< y ya the

instability is convective.

A more complete picture of the instability can be obtained from a study of the asymp-

totic pulse shape. This is determined by examining the absolute instability growth rate

as a function of an observer's frame velocity V. We thus transform Eq. 4 to

D(K, s + KV) = DV and solve for the roots of DV = 0 and 8DV /K = 0. This gives

y 2 (V+)-V i/  
2 (v-V) +y 3 (V+c)

Soi(V) [(Vc)(vV - + v (9)
(c+v)

which for V = 0 and y 2 = y 3 = 0 reduces to Eq. 6. A plot of s oi as a function of V gives

the asymptotic pulse-shape evolution, since s .t ~ In G(z, t - oo) and Vt = z. The three
01

curves in Fig. IV-4 show this pulse shape at the threshold for instability (y=yc), when

it is convectively unstable (c < Y < 'Ya ), and at the threshold for absolute instability

(y = Ya). All of the important characteristics of the pulse shape can be determined ana-

lytically. First, we note that

soi(-c) = -Y 2 (10)
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S oi(v) = -Y3" (11)

Thus wave damping has the effect of narrowing the growing (So > 0) part of the pulse,01

V O v

Fig. IV-4. Sketch of soi vs V for various coupling strengths,

as given by y, and with the wave-damping rates y2
and y 3 kept fixed.

and thus reduces its expansion rate. The pulse-edge velocities V = V can be found by

setting Eq. 9 to zero. This gives

2yr
V - (c-v) 2 ± (c+v) 2yr

T 2 /2 /y 2±'Y3

I+r 2
1 + r

where

S (Y 2 _

(Y2 +"Y3)2

and
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1 21/2

V ' - 3  (sgn V ) (vc)1/2 (14)
T N2 + N3  T( 2+ 3 )/2

is clearly the pulse velocity at the threshold for instability(y= ye and hence 2 =0). At

the absolute instability threshold (y = ya, see Eq. 8) we find from Eq. 12 that V sgn V  = 0, as

expected, and above this threshold we approach the case of coupling of undamped waves

for which V+ = v and V_ = -c. The maximum of the asymptotic pulse (soim) and the

velocity with which it moves (Vo) can be found by maximizing Eq. 9 with respect to V.

The results can be written

c-v I c+v ) 2 - 3 [ + 2 - 3 2

2 c-v) 2y 2y

VT + (-2v (+ r2) 1/2

(15)

(1 + 2 1/2

and

L+ (Y 2 - Y3
soim 2, + y 2 /2

= _/_Y _ (_ 1 21 1 . (16)

2
At the threshold for instability (y = yc and hence F 0) S = 0 and V = VT , as would

be expected. Far above this threshold Vo - -(c-v)/2 and soim - y, which is the maxi-

mum possible growth rate. We note that s oim is independent of the group velocities of

the unperturbed waves. Finally, when the pulse is convectively unstable (yc < ' < ' ) it

is of interest to determine the maximum spatial growth rate (Kim). This can be deter-

mined either from Eq. 9, together with the construction shown in Fig. IV-4, or directly

from the dispersion relation (Eq. 4) for real s, by noting that Km = K. (s = s ), where

-1
Srm is determined from DKi/aSr = 0; Vs is then given by (aKr/ sr) s The results are

rm

V 2cv (17)
s (c+v) c-v)( 1/

(sgn VT) a c+v a
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Computed plots of s oi vs V; Sol normalized

to y, V normalized to c, v/c chosen as . 05.
(a) s oi(V) vs mode 3 damping, with mode 2

damping fixed. - 2 /y = 1; y3 /y = 0, .25,

. 50, .75, 1.0.
(b) s oi(V) vs mode 2 damping, with mode 3

damping fixed. y3 /y = 1; y 2 /y = 0, . 25,

. 50, .75, 1.0.
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Fig. IV-6. s oi(V) plots for the pulses illustrated in Fig. IV-7.

v/c = . 05, (a) y 2 /y = 1.5, y 3 /y = . 5; (b) y 2 /y = .5,

y3/Y = 1. 5; (c) y 2/y = 3.0, y3 /y = . 2.
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and

Kim = -(sgn V )Im T cv

2 2 1/2
cv (18)

2 2
For ya > y2 this growth rate is largest near the absolute instability threshold (y- ya),

where it is approximately ya/(c)/2, and decreases from this value by a factor
( -2_ 2 )/2ya when y << -ya

Figures IV-5, IV-6, and IV-7 give numerically calculated asymptotic pulse shapes

Fig. IV-7.

Computed plots of the spatial development of the
time asymptotic exponential envelope of the Green's
function v/c = . 05.
(a) Slow convective pulse Y2/y = 1. 5, y3 /y = . 5.

(b) Fast convective pulse yZ/ = . 5, Y3 /y = 1.5.

(c) Absolutely unstable pulse Y2Z/y = 3. 0, y3 /y = . 2.

0 10
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for various conditions of wave damping. The ratio v/c was kept fixed at a small value,

which is typical of interactions of stimulated Brillouin or Raman scattering. Figure IV-5

shows the effect of varying the damping rate of one or the other wave. We note in par-

ticular (Fig. IV-5b) that when the backscattered wave is weakly damped the main portion

of the unstable pulse moves very rapidly; only large increases in damping that almost

quench the instability can reduce this motion. Figures IV-6 and IV-7 illustrate the time-

space evolution of convective and absolute instabilities. Note in particular (Fig. IV-7a

and b) that convective instabilities may be very different in nature, depending on their

pulse-edge velocities. This has important consequences with respect to the evolution

of such instabilities in an interaction region of finite extent.
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1. SOME FAST INEXPENSIVE LINE PULSERS NOW IN USE

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

A. Hershcovitch, P. M. Margosian

For a great variety of physics experiments, a fast (a few nanoseconds rise and fall),

high-voltage (a few kilovolts) pulse generator is frequently needed. This is not a new

problem. A standard solution I is to charge a delay line, then switch it into its charac-
1

teristic impedance (Fig. IV-8) to give Vpuls e  V harge A variation of this is the
pulse 2 charge

Blumlein pulser (Fig. IV-9) which uses two identical delay lines and gives Vpulse

-V charg e , thereby providing a higher voltage pulse for a given switch. In both cases the
charge

rise time of the pulse is determined by the turn-on time of the switch; the fall time is

ideally a reflection of the rise, but in practice is limited by high-frequency properties of

the delay line. This report describes a collection of inexpensive line pulsers that we are

using.

Rcharge

V(dc)

SWITCH

Vout = V(dc)

RIoad = Zo

Fig. IV-8. Standard line pulser.

The traditional switches - rotating mechanical, rotating spark gap, and thyratron -

are discussed by Glascoe and Lebacqz. A rotating mechanical switch, with 4 electrical
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V(dc)

Rcharge
DELAY LINE

ou t -V(dc)

Rload = 2Z

Fig. IV-9. Blumlein pulser.

contacts embedded in a bakelite wheel, a sliding contact wiper, and a motor was built by

Kenneth Rettman in our laboratory. This switch, using the circuit of Fig. IV-8 with RG58

A/U cable as delay line, exhibits rise times of 3-5 ns for Vcharg e = 300 to 3000 V.

We have built thyratron pulsers using an EG&G krytron (current limited to approxi-

mately 10 A) and using a coaxial hydrogen thyratron; in both cases rise times were near

10 ns. These traditional switches tend to be costly (approximately $200 for a fast thyra-

tron and approximately 5 days labor to build a rotating switch). The krytron has a lim-

ited life. These switches also exhibit a good deal of jitter.

ANODE

51

Fig. IV-10. Homemade fast SCR.

GATE

CATHODE

An alternative to these is the semiconductor controlled rectifier (SCR). A fast SCR

was built from 2 transistors (Fig. IV-10); it provides a rise time of 20 ns current up

QPR No. 111
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to 3-4 A, handles up to 150 V, and costs approximately $3 for parts. A stack of 16 of

these SCRs is regularly used in the circuit shown in Fig. IV-8 with an artificial line for

150-1500 V. A fast commercial unit is available from Unitrode Corporation (GB-301)

for ~$9 (30 A, 20 ns, 100 V). A Blumlein pulser (Fig. IV-9) was built with 10 of these

with two RG58 A/U cables to provide 50-1000 V pulses with rise time of 20 ns and

length of 400 ns. For both types of SCR, there was no loss of speed from stacking, as

TOROII

FERRI

COR

I

15-V
PULSE
IN

DAL

TE

E

2k

2 k Q

2-

Fig. IV-12.

TRI GG ER
PULSE

(30) - 2N39(

Fig. IV-11. Triggering for stacked SCRs.

COPPER-FOIL GROUND PLANE

INSULATION- BLACK ELECTRICAL TAPE (MYLAR)

ENAMELED WIRE, CLOSELY WOUND 1" DIAM PLEX! LAS ROD

High-impedance delay line (-1000 ).

-2200 V (dc )

Fig. IV-13. Avalanche pulser.

QPR No. 111



(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

long as all were triggered simultaneously through a transformer (Fig. IV-11).

Another alternative is to use the avalanche transistor. 3 This has a current limita-

tion (1-2 A) and produces a nearly fixed voltage (close to Vce of the transistor), but

very high speed (less than 1 ns is possible). For a high-voltage pulse it is necessary to

stack many transistors (e. g., 2N3904) and build a high-impedance delay line (-1000 £).

Two 1000 Q lines were built (Fig. IV-12) using a technique suggested by Lidsky and

Rose. A Blumlein pulser was built that used 30 of the 2N3904 transistors and two

1000 2 lines (Fig. IV-13); it provided -2 kV into 2000 2 with 10 ns rise time and cost less

than $10 for parts. In building this type of pulser it is necessary to exercise some care

in the choice of the charging resistor and the number of stacked transistors in order to

prevent oscillation and misfiring; the bias current through the transistors should be

~20 fA when the lines are charged to operating voltage.

Of the switching techniques discussed, the fast commercial SCRs are the most

flexible, and the avalanche circuit is the fastest and least expensive.

We have received helpful suggestions from Donald L. Cook, Donald P. Hutchinson,

Professor Lawrence M. Lidsky, and Professor Peter A. Politzer.
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2. LINEAR ANALYSIS OF THE "ONE-HALF CYCLOTRON

FREQUENCY" INSTABILITY

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

A. Hershcovitch, P. A. Politzer

Introduction

1-4

It has been observed that the one-half cyclotron frequency instability occurs

in counterstreaming finite cross-section beams in a magnetic field. The instability is

caused by coupling between a space-charge wave on one beam and a backward cyclotron

wave on the other.3,4 This instability occurs only when the beams have a finite cross

section such that the-variation in local charge density caused by the longitudinal wave

affects the cyclotron wave on the oppositely directed beam (i. e. , backward cyclotron

wave).

Linear analysis of this instability 1 - 4 shows good agreement between the linear
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theory and the experimental results 3 with regard to the threshold density for the onset

of the instability. There is no agreement, however, concerning the prediction of the

thermal spread of the beams which is needed to "saturate" this instability.

Previous linear theories related to cold beams. This is rather unrealistic, since

the beams have a finite temperature that is equal to the cathode temperature.

Murakami and Lidsky 3 have observed that the beam temperature increases as the

instability grows, and that after 1 ps the instability that occurs at a frequency /2

seems to saturate.

Therefore it is logical to make the analysis by considering finite temperature beams.

Quasi-linear theory will not be used now. It is assumed that the beams evolve to some

thermal spread close to that needed to stabilize the instability. At this point, the lin-

ear theory is applied. First, a dispersion relation for finite temperature beams, which

at the limit of zero temperature reduces to the old dispersion relation, will be derived.
3, 4

Next, this dispersion relation will be used to analyze Murakami's experiment, and

to calculate the thermal spread needed for stabilization. It will be shown that the insta-

bility does not saturate; only its frequency changes.

Dispersion Relation for Two Hot Counterstreaming Electron Beams

for an Infinite Homogeneous Medium in a Uniform Magnetic Field

The dispersion relation is derived by using the Harris dispersion relation,5 and by

considering two drifting Maxwellians.

The Harris dispersion relation is

2 J " )
S. 3 n F f .oj nQ. af

k2 - k vz - nQ. z  v( 1 )
j n= -o z z j zI

The distribution function that is assumed is

v (v -v ) (v +v )

fo - 2 exp - 2 + exp 2
0 3/23 VT T v v

where vo > vT, vTI = vTz = v T , with vo the streaming velocity, and vT the thermal

spread. In this case, there are only electrons, therefore . = = and . = - e = -.

With this distribution function, the Harris dispersion relation in cylindrical coordinates

becomes

QPR No. 111



(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

2

0 = 1 + v 1 dvI exp - J 2 dvzkn 0 z
T n=-o VT oo

k z(v-vo)-na (v-v) k(v+ ) -+ exp (v +v )2
k v n-_ exp 2 k v -na- exp 2

zz vT  zz v T

(2)

Now, in Eq. 2, the integrations over vz and vI can be done separately. For the inte-
gration over vI, Weber's second exponential integral 6 is used. The integration over
v is performed by using the plasma dispersion function 7 and its derivatives. After

some manipulations, the following dispersion relationis obtained. 8

2
W /2 2 2\

E(k, ) = 0 = 1 exp I - 2 v +

k2 V 2 2  n 2 2 T kz

(w-k v +nQ) -- k vo (w+k v +n

kzvT k z k z T

In the limit of zero v T, by using the properties of the z function7 and Bessel func-

tions, 6,9 Eq. 3 reduces8 to

2 2 2w w 2w 2w 2

p p p p
E(k, c) =1 = 1 + + (4)

(w-k v )2  (+k v ) 2 0 - (w-k v ) 2 - (w+k v ()

This is in agreement with Maxum and Trivelpiece.1

Analysis of Murakami's Experiment Using the Dispersion Relation (Eq. 3)

Stability analysis of Eq. 3 is now performed by using the parameters of Murakami's

experiment. 3 These parameters are beam radius 1 mm = rb; Q = 2. 8 x 10 Hz = 2 X
8 2 17 2 22. 8 X 10 rad/s; w = 0.1 Q; E = 1 keV, therefore v = 35. 5 X 10 cm /sp o 0

Recall that the dispersion relation (Eq. 3) is valid for an infinite homogeneous elec-

tron gas in a constant uniform magnetic field. In Murikami's experiment the beams

are narrow, with constant density across the cross section. Thus, in order to simu-

late the geometrical effects, the value of the perpendicular component of the wavelength

is assumed to be equal to the beam radius. Hence an infinite homogeneous medium
2rr

is assumed with k = -. This assumption and the assumed distribution function areI rb
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the major assumptions, and they seem to be very realistic.

By using the parameters of this experiment, Eq. 3 can be simplified by using the

following approximations.

(a) For a strong resonant wave-particle interaction to occur the phase velocity of

the unstable waves has to be close to the velocity of some electrons. Therefore
S-k v

z o _ 1 for strong wave-particle resonant interaction to occur. Since for large
kV TzT 7

arguments the Z function is small, the main contribution from the first Z function

in Eq. 3 is for n = 0, and the main contribution from the second Z function in Eq. 3

is for n = -1. This is indeed consistent with the physical model 3 ' 4 which attributes

the instability to the coupling between the space-charge wave (n= 0) and the backward

cyclotron wave (n= -1). Therefore, the summation in Eq. 3 needs to be done only for

n = 0 and n = -1.
22

3, 4 k-VT
(b) For an observed initial thermal spread of 20 eV we obtain ~ 10. There-

2 22
x

fore, since I (x) - for x >> n, I in Eq. 3 can be taken outside the sum-
n \1xn ( 2Q2

mation sign.

With these approximations, Eq. 3 becomes

2

0 = - 1 -4vT + Z
2 3 T k kv

k vT kIv2 2 z T0:, /ZIT 2 2

k kv k 0kv
z z T z z T

+ -w-k z v)v- (5)

The arguments of the first and last Z functions are less than one. The other two have

arguments that are much greater than one. Accordingly, the Z functions in Eq. 5 are

expanded. In this analysis, the case of marginal stability is considered; that is,

Im aw 0. Hence we use the expansions for the Z functions, keeping first terms only.

At this point, further approximations can be made. By considering the following argu-

ments, the second and third exponentials can be neglected. The other exponentials have

small arguments, hence they can be approximated to one. Thus the dispersion relation

reduces to

QPR No. 111



(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

2 2 2 5

2 i 3 kzVT \J k 2 kzki T 2 2
2c - + kT + 2 + 2kzv - k v 0 = 0. (6)

2oT 2 42z o z o

p

The solution to Eq. 6 is

S=n 'i kv +v + i- T -k v E kzVT2
4 8 zT 4 zTT 4 zT

-8 2kv - kz + k2 v
zz o 4 2 Q z T

P

Roughly, for vT < 2.7 x 108 cm/s, that is, for thermal energy ET < 20 eV, the roots of

w are WlQ + i(. 2 kvT + .7 k vT ), which is the one-half cyclotron frequency

instability, and wc2  0 + i(.2 kzvT -. 7 2kVT), which is the two-stream instability. This

is in agreement with previous predictions. But, for thermal energies above 20 eV, the

discriminant becomes negative abruptly. Therefore, the real part of W changes

abruptly from 0/2 to 0/4. The electron gas remains unstable, since there is always

at least one positive imaginary root.

Murakami and Lidsky have shownl0 the time development of the parallel-energy dis-

tribution function of one of the beams. They have also shown an oscilloscope displayl 1

of an electrostatic probe signal amplified by a tuned amplifier from which it can be seen

that during the first microsecond the 2/2 signal is picked up by the probe. This signal

disappears after 1 4s. This does not imply stabilization, since we showed that the fre-

quency changes abruptly and, therefore, it was not recorded. As the temperature of

the electron gas changes, its dielectric properties change. This may account for the
12

change in frequency. It is also obvious that an instability still exists, since each beam

has a bump-on-tail distribution. In addition, the beams are not hot enough for the two-

stream instability to disappear.

Thus in filamentary counterstreaming electron beams the dominating instability

occurs at Q2/2 frequency. After some thermalization this frequency changes, but

the plasma remains unstable. This is very consistent with experimental obser-

vations.
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1. EXPERIMENTAL DETERMINATION OF THE EXPECTED LIFETIME

OF A THETA-PINCH FIRST WALL

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

A. Pant, L. M. Lidsky

Theta Pinch: General Description

A pulsed fusion reactor (6-pinch) is envisaged1 as an evacuated toroidal reaction

chamber in which an initially ionized deuterium-tritium mixture is heated to thermonu-

clear temperatures by an imploding magnetic field. Surrounding the reaction chamber

is a "blanket" wherein the reaction kinetic energy of the 14-MeV neutrons is converted

to thermal energy.

The fusion plasma is created in two stages of magnetic compression (Fig. IV-14). A

shock magnetic field with rise time of a few nanoseconds and magnitude 1-2 T is pro-

duced in the reaction chamber by a rapidly rising current in the first wall. This shock-

heats the plasma to 1-2 keV. Following this, a slower rise time (10-20 ms) field of

magnitude 10-20 T is created by turning on an outer compression coil. The plasma is

adiabatically heated to thermonuclear temperatures (10-15 keV). The duration of the

thermonuclear burn is expected to be 50-100 ms, with a cycle time of 5-10 s (Fig. IV-15).

A fresh charge of gas is introduced into the chamber and the cycle is repeated.

The vacuum wall of the reaction chamber is approximately 1 cm thick and is divided

into 8-10 azimuthal sections (Fig. IV-16), which are insulated from each other. The

shock magnetic field is created by applying a high-voltage pulse across each gap ("feed

slot") simultaneously.

The adiabatic compression coil surrounds the shock coil and is separated from

it by an inner blanket. The inner blanket provides for first-wall cooling and

neutron moderation, and also reduces high-energy neutron damage to the compression

coil.
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A) SHOCK-HEATING B) EQUILIBRATION

Fig. IV-14.

Plasma heating and burning in a
staged, 0-pinch, pulsed reactor.

(From Burnett et al. 1 )

C) ADIABATIC COMPRESSION D) BURNING AND DIRECT
CONVERSION

COMPRESSION
AND BURNING

SHOCK
HEATING

Fig. IV-15.

Magnetic field in a pulsed,
high-p, 0-pinch, reactor vs
time, showing the time his -
tory of heating, burning,
cooling, and refueling. (From

Burnett et al.

~ ~5-10s
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Fig. IV-16.

Core and compression coil of a
pulsed, 0-pinch reactor. (From

Burnett et al. 1 )
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Quantification of Dominant Heat Loads

Typical reactor parameters, shown in Table IV-1, are used to determine which heat

loads are to be simulated, and their values.

For a given reactor thermal output, the energy flow through the first wall per pulse

can be calculated simply from reactor size, load factor, and burn duration. Figure IV-17

shows typical values of energy flow per unit length for a 3 GW(th) reactor with load fac-

tor 0. 02 and burn duration of 0. 1 s. Curve C indicates the energy flow required

for economic feasibility. 2

In"E
!.0

E
o

Liw

0o

cc
w
C-)

00

7Fr
Li LO Xw
I
H-

L.0x
0 10 20 30 40 50

WALL RADIUS r, (cm)

Fig. IV-17. Thermonuclear power vs wall radius.

Blanket neutronic studies 3 ' 4 have shown that considerations of neutron economy and

tritium breeding demand that the first wall be approximately 1 cm thick. They also indi-

cate that, of the total energy release per neutron in the blanket by both primary recoil

and secondary gamma-ray effects, approximately 5 % is deposited uniformly throughout

the first wall.

Bremsstrahlung radiation energy is a plasma temperature-dependent fraction of the

thermonuclear energy, and for reactor-type plasmas (10-15 keV) this fraction is approx-

imately 1%. The energy is absorbed in the first few millimeters of the vacuum wall.
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Fig. IV-18. Detail of first wall.
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Fig. IV-19. Percent of incident Bremsstrahlung radiation
first-wall insulator (A1203), plotted against

energy absorbed in the
the wall thickness, for

several different values of the electron temperature of the plasma

that emits the radiation. (From Burnett et al. )
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Plasma physics criteria governing the shock-heating of the plasma, and the fact that

the first wall is cooled by liquid lithium, demand that the dual-purpose vacuum wall/shock

coil be electrically insulated from the plasma and the coolant. Therefore it has been

proposed1 that the first wall be a composite structure of a suitable niobium alloy
"sandwiched" between two layers of insulating material (Fig. IV-18).

The failure of the first wall is governed by the strength of the niobium alloy rather

than the insulator. As 8 0 - 9 0 %0 of the Bremsstrahlung energy is absorbed in the insulating

material (Fig. IV-19), and is conducted through the metal, the dominant effect of

the Bremsstrahlung radiation is to load the interface between the insulating material and

the metal, rather than the metal itself. The major concern for this study is the integ-

rity of the metal, and not the interface strength, although this is of general impor-

tance. Thus Bremsstrahlung loading may be neglected in comparison with neutronic

heating in establishing failure criteria.

The thermonuclear energy per pulse can be expressed in terms of the final compres-

sion ratio of the plasma, xf, and the final magnetic field, B ( Table IV-1). The thermal

load from electrical heating is a function of the shock field, Bsh. The ratio Bf /Bsh can

be expressed in terms of xfi sh, where xsh is the compression ratio after the shock

pulse. The quantity Xsh can be evaluated in terms of the dynamics of the shock phase

of the pulse. Hence the electrical heating can be found in terms of the thermonuclear

Table IV-1. Typical reactor operating parameters.

OUTPUT 3 GW (th)

COIL RADIUS, r 25 cm

MACHINE ASPECT RATIO, A 200

NUMBER OF FEED SLOTS 10

FINAL COMPRESSION RATIO, x, 0.2

FINAL MAGNETIC FIELD, Bf 15 T

FINAL PLASMA TEMPERATURE, Tf 15 keV

SHOCK MAGNETIC FIELD, Bsh 2.1 TESLA

BURN DURATION, rb 0.1 sec

CYCLE TIME, Tr 5 sec

SHOCK PULSE RISE TIME, -r 50 nsec

FIRST-WALL AMBIENT TEMPERATURE 6000 - 10000 C

NEUTRONIC HEAT LOAD 2.4x10 4 J/cm/pulse

BREMSSTRAHLUNG HEAT LOAD 5.0x10 3 J/cm//pulse

JOULE HEATING DUE TO SHOCK PULSE 3.2 J/cm/pulse
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energy. For typical reactor operating conditions (Table IV-1) this load is three to four

orders of magnitude less than the neutron load, and can be neglected.

The dominant load in the first wall is caused by neutronic and gamma backshine

heating for typical reactor operating conditions. Some further reactor design considera-

tions will be used to justify the choice of a suitable model, and determine relevant

scaling laws for the experiment.

Determination of Model Parameters

Plasma heating considerations demand that the first wall of the reactor be segmented

azimuthally, with each section insulated from its neighbors. Engineering considera-

tions will probably require that the reactor be constructed in segments along the toroidal

direction. Thus one section of the reactor first wall (Fig. IV-20) can be modeled

without loss of generality.

INSULATED
FEED SLOT/

Fig. IV-20. Dimensions and geom-
etry of one section of

IcM the first wall.

/6' 
0/ G 0 \0 

0

For the thickness/radius ratios of interest here, curvature effects are negligible,

and the model can be constructed in slab geometry.

The presence of insulating material between each section in the azimuthal direction

will not allow for movement in this direction. In the toroidal direction, however, the

reactor will probably be made of individually cooled sections that allow for expansion

between them. Thus realistic boundary conditions for the model are that it be clamped

in the azimuthal direction, and free in the toroidal direction.

Model prototype scaling laws can now be established by deducing dimensionless rela-

tionships (Fig. IV-21) between expected stress levels, operating conditions, and

material properties.

The temperature and stress oscillations in a slab subjected to cyclic thermal loading

are shown in Figs. IV-22 and IV-23. For reactor operating conditions, the maximum

temperature oscillation is expected to be approximately 80-160oF and the maximum
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Fig. IV-21.

Dimensional dependence of stress pro-
files.
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Fig. IV-23.

Stress profiles.
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Fig. IV-2Z.

Temperature oscillations in a slab of
thickness L.
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FOR n =4; n2 

= 
8

(H)PROTOTYPE (H)MODEL (Tb)PROTOTYPE (Tb)MODEL (r)PROTOTYPE (c)MODEL

0.2 mJ/pulse 1.6 kJ/pulse 0.1 sec 6 msec 5 sec 0.3 sec

Fig. IV-24.

Heat loads and time values for
the model.
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stress oscillation about 3-6 kpsi in typical niobium alloys.5 Yield strengths for such

alloys are 30-40 kpsi, and hence failure is expected to be dominated by high cycle

fatigue. 6 In order to simulate the stress levels, model and prototype must have the same

values for the Fourier modulus, Fo , and the thermal load coefficient, T . To establish
o o

failure criteria, model and prototype must be constructed of the same material, and be

operated at the same ambient temperature. Thus, relationships among heat load, heating

pulse duration, cycle time, and geometric scale factor are immediately established.

Stress-strain relationships and failure levels become grain orientation -dependent

if more than 5% of the grains are on the surface of the model.7 The governing dimen-

sion is model thickness, and randomness of grain orientation can be retained in niobium

alloys of interest (50 Iim grain size) 5 by keeping model thickness above 0. 2 cm, which

corresponds to a maximum thickness scale factor of 5. The scale factor, n, is chosen

as 4 for model width and thickness, and 8 for length.

For the given reactor parameters, the pulse duration in the model, (Tb)mo d , will

be 6 ms, with a cycle time, ( Tc)mod , of 300 ms (Fig. IV -24). The heat load in the model

is 0.96 kJ/pulse corresponding to the reactor of Table IV-1 (1.6 kJ/pulse is equivalent

Table IV-2. Possible options for varying loading conditions.

OPTION EFFECT

REDUCE CYCLE TIME, r LOAD FACTOR INCREASED, HIGHER REPETITION RATE
c

LOAD FACTOR UNALTERED.

HIGHER TEMPERATURE PEAKS AND CYCLIC STRESSES
INCREASE HEAT LOAD PER PULSE MAXIMUM LOAD IS 50-60% HIGHER THAN

WALL FLUX LIMIT FOR LOAD FACTOR 0.02

TEST FOR EXTREME LOADING CONDITIONS

REDUCE MODEL SIZE SIZE OF MODEL CAN BE CORRELATED WITH

VALID REACTOR SIZE

to a time-averaged power throughout of 1 kW/'cm ). This determines the required

power levels to be produced in the laboratory. It is intended to provide for a maximum

model loading of 2. 5 kJ/pulse with controllable cycle times. Thus the model can be

tested for loading conditions 50% greater than required for economic feasibility.

Table IV-2 shows the possible options. Models can be tested over a wide range of loads,

and baseline lifetimes can be evaluated.

Design of Experiment: Present Status

The model must be tested at different operating temperatures. Initial, low-temperature

tests will enable us to determine stress levels by using strain-gauge techniques,
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while high-temperature tests will be used to establish failure criteria. A controlled

temperature environment will be used for the tests, and will provide for uniform ambi-

ent temperature. Simulation of first-wall cooling will be achieved by free convection

cooling with a nonconducting eutectic salt (FLIBE).

The model (Fig. IV-25) forms part of the secondary circuit of a pulse transformer,

whose primary is triggered with a high-voltage, high-current SCR. The time between

pulses can be varied to suit required loading conditions. The 60-Hz ac line, when com-

bined with judicious use of pulse transformer properties, will be used to provide a

heating pulse of the required duration.

AZIMUTHAL" EXISTS
. ... cm DIRECTION
6 25 rn RECPRESENT TEMPERATURE

I rONTROLI cm

PULSE

0 2 UNIT TRANSFORMER MOOL

FUTURE MODEL
SLOTTED FROM PULSE COOLING
BUS BAR TRANSFORMER j

Fig. IV-25. Model details. Fig. IV-26. Components of appara-
tus, and status of the
experiment.

The shaped ends of the model serve the dual purpose of minimizing end losses and

providing the required boundary condition in the azimuthal direction. The thermal

response time of the ends will be much larger than that of the model strip; hence, for

cyclic loading the model can be considered to have fixed ends. The boundary condition

in the toroidal direction will be neither fixed nor free; probably closer to reality than

a pure "free" boundary would be. As we have mentioned, failure is expected to be

dominated by high cycle fatigue. The imposed boundary conditions imply that a com-

bination of two failure modes may be present. In the azimuthal direction, cyclic com-

pressive stresses, and hence buckling failure, will dominate. Model lifetime will

depend on both heat-load magnitude and model width. In the toroidal direction, the

stresses are tensile cyclic, and hence surface cracking is expected.

The present phase of this study (Fig. IV-26) involves the construction of the

experiment, in particular, the pulse transformer and electrical heating unit. The

detailed design and manufacture of model assemblies, complete with provision for

cooling, will be in the next phase, after which tests of stress level and failure

can be started.
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1. CURRENT-DRIVEN INSTABILITIES IN A PLASMA

U. S. Atomic Energy Commission (Contract AT(11-1)-3070)

M. S. Tekula, A. Bers

It was reported by Bobrovskii et al.1 that when the Tokamak TM-3 device was oper-

ated in a region of high electron temperature and low plasma density (T > 500 eV and

n < 6 x 10 12/cm 3 ) that ions were observed whose energy could not be explained by cou-

lomb energy transfer from the electrons to the ions. This was a regime of operation

where the plasma was collisionless and had an anomalously high resistance. Attempts

have been made to explain these effects on the basis of collective interactions. Lack

of knowledge of the precise turbulent spectra has prevented reaching a definite conclusion

about the validity of this explanation.

We now report the results of detailed calculations on the spectra of electrostatic

waves in a homogeneous, fully ionized, collisionless plasma in a magnetic field. The

ion distribution function is assumed Maxwellian and the electron distribution function is

taken to be Maxwellian with a drift velocity relative to the ions. The parameters that

we picked correspond to two experiments reported by Bobrovskii et al., and are listed

in Table IV-3. In the first experiment, the current was held fixed at 12 kA and the mag-

netic field was varied from 10 kG to 26 kG. In the first case 3T% of the ions were heated.

Fewer and fewer were observed to be heated as the magnetic field was increased, until

none were observed at 26 kG. In Table IV-3, in TM-3 (a) the current was 12 kA, and

Dr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.
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Table IV-3. Parameters for TM-3 experiments.

= 12 kA, B

= 12 kA, B
o

= 24 kA, B
o

= 36 kA, B
0

= 10 kG, T = 1 keV
e

= 26 kG, T = 1 keV
e

= 26 kG,

= 26 kG,

T = 4 keV
e

T 9 ke\-
e

NOTE: These parameters are common to all cases considered here:

a= 8 cm, R= 40 cm, T.= 50 eV, mi/m = 1836, n= 1018 m 3
S1 e
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the magnetic field 10 kG; in TMI-3 (b) the magnetic field was 26 kG. In the second exper-
iment the magnetic field was fixed at 26 kG and the current was varied from 7 kA to
36 kA. In TM-3 (c) the current was 24 k A; in TM-3 (d) the current was 36 kA. It was

observed that the number of ions heated was 5k / and 13', respectively. For all cases
we took the density to be I X 1012/cm3. The ratio of electron drift velocity to ion sound

speed (ule, /cs ) was observed to be 12 for all cases.

The dispersion relation can be written

n n

(1)

where 0 : / l = k i/a., T = TiiT', M- = ni/m , = 2 o L u k.ci, 1 ci e 1 e ci pi' le 1
1/2 2v. = (2KT./m )1/2 , = (kla .) , a = "e \2, (Q-n)/K , 11 1 e, I e,I e, i e, i ce, 1 ni ne

S)(K ( /2), F() = I () e .The modified Bessel function is I (X), and
n n n

Z is Fried and Conte's plasma dispersion function. Figures IV-27 through IV-29 rep-

resent an exact computer solution of the dispersion relation in Eq. 1 for the parameters

listed in Table IV-3.

Before discussing the results, we shall consider the conditions under which the

homogeneous and collisionless plasma assumptions may be applicable to the Tokamak

experiments under consideration. The coulomb collision times, summarized in

Table IV-3, are found to be negligible compat'ed with the growth rates. The longest

wavelength in the radial direction that we have considered is ~0. 8 cm, which is much

smaller than the 8-cm plasma radius. In any case, the density in a Tokamak is rela-

tively homogeneous across the plasma cross section except at the periphery. The effects

of the magnetic field inhomogeneity should be explored by using a dispersion relation

based on the actual zero-order particle orbits in the Tokamak. We shall argue, however,

that for the short-wavelength, fast-growing modes which we found, this is not necessary.

In a Tokamak, particles are assumed to be in the banana regime when their effective col-

lision frequency veff is much smaller than the bounce frequency ab. For the ions v eff =
ii/(r/R), which for a typical ion located at half the plasma radius r = a/2 is 10 /s; for

the TM-3 experiments we found B 1 10104/s. For the electrons, veff = ei(r/R) 1 0 3

but B ~ 106, for r = a/2. Electrons start to be trapped when v i/v < (2r/R) evalu

ated at the minima of the magnetic field. For r = a/2 this means that we have to take

particle trapping into account for angles of propagation with respect to the magnetic field

greater than about 70 . We find, however, that the most unstable ion-acoustic and mag-

netoacoustic waves lie outside the region of particle trapping. For r = a/2, 30% of the

electrons are trapped. Since the typical oscillation frequency is W ~ 7. 5 X 108/s, and
the growth rate is 7. 5 X 10 /s, while the bounce frequency is a ~ 10 6, we can say thatthe~~~ ~ ,rwt ixe s7.5X1
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(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

on the time scale of the unstable waves the current that drives the instabilities is the

same as that used in the case of no trapping; hence the growth rates are not modified by

the trapped particles. In the case of the ion cyclotron waves we have to examine Landau

damping in toroidal coordinates, because this wave lies in the trapped particle regime.

But, since the average velocity of trapped electrons is ( vT) ~ 10 cs while the parallel

phase velocity of the wave is c s cos 0, we could not get any trapped particle-wave

resonance. Hence, for all the unstable waves we are considering, the homogeneity

assumption is a good one.

Now we turn our attention to the spectra. Figures IV-27 through IV-29 show the

results of computations based on the complete dispersion relation (Eq. 1). The solid

lines are contours of constant normalized real frequency QR; dashed lines are contours

of constant normalized imaginary frequency I.
We shall discuss some approximate solutions to Eq. 1, and see how they can be

applied to explain the computed results shown in the figures. To solve Eq. 1, we assume

that the waves are weakly damped or growing (I2/IR << 1), where Q = QR + j~iI'
Consider, first, the slow magnetoacoustic wave R << 1. The dispersion relation for

this wave can be derived by dropping all but the n = 0 term in Eq. 1. Then, assuming

«oe<< 1 and I oi >> 1 (which implies Te/T >> 1), and IF ( ) = 1. F (k ) z 1 (that is,

2 2 -6
K << 1), and dropping terms of order o and o . in the Z-function expansions, we get

I oe oi

R/K = 1/(2T)1/2; ( /k Ts )  (2)

a (T/8M) / 2 K 1 U-[/(2T)'/2](1 + (M/T3 )/2 e-1/(2T)).

Equation 2 implies that both the real and imaginary parts of the frequency should be ver-

tical lines on a (KI, K11) plot (see Fig. IV-27). The imaginary part deviates from vertical

because, for a fixed w, as ki becomes large compared with kl , the wave goes through a

resonance (co = .ci cos 0) and is strongly Landau-damped. This is indicated in Fig. IV-27

by the curvature of the contours of the constant imaginary part. The value of K at which

this occurs is K - 0. 5(2T) / 2 , that is, k kDi (Ti /T W1/2 /2 C This is in agree-11 II Di ) cpi ci.

ment with Fig. IV-27. Notice that the magnetic field is not an important parameter in

determining the extent of the normalized turbulent spectrum (compare Fig. IV-27a and

27b). On the other hand, the effect of changing the current and temperature ratio is

more significant, as Eq. 5 implies (see Fig. IV-27b, 27c, 27d).

Next we shall consider the ion acoustic wave. The conditions under which this can

be derived from Eq. 1 are R >> 1, C oe I << 1 Ine >> , I i >> 1, k << 1. With theseR oe ne ni e,i
2 -6 -4 -4

assumptions and dropping terms of order o e, ,oi' ,ni I ne' we getoe 01 ni ne
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(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

QR/K ' 1/(2T) 1! 2 (w/k = cs )

(3)

I -- (T/ M)1/2 KU - [i/((2T)1 / 2 cos 0)] [1 + (M/T3) 1 /2 exp(-1/2T cos 2 0)

when K 2 << 2T/A (that is, k 2 2  << (T./T )), andDi 1 e

R  /A / 2  p

(4)

Q (TFT 3 /M) 1/2 [/[K 2 A 3 / 211 U- (1/(A' / 2 K!)) [1 + (M/T 3 ) 1/ 2 exp(-1/AK )

2 2 2
when K2 >> 2T/A (that is, k2'Di >> (Ti /Te)) The normalized velocity necessary to induce

unstable ion acoustic waves parallel to the magnetic field is given by

U > [1/(2T) 1 /21 + (M/T 3 ) 1/ 2 e-1/2T. (5)

This is the same velocity that is needed for magnetoacoustic waves. Hence for a mag-

netoacoustic wave, once the wave parallel to the field is unstable, it is unstable at all

angles (cf. Eq. 2). On the other hand, the velocity necessary to induce unstable

0.20- , 0.2

0 . I ,6 0.2 . 5 /0.4 0.6
S 2 / .4 . K1

-0.10 \ 00 -O.004
5-0.05

007 -- 0.07

0.05 - 08 0.05 0.08

0.1 2 0.3 0.1 0.2 0.3
K j

04 K,(a) (b). O C. 0O
O\ 0.0 0 .5

0.07
r00 , 0 7

0.1 0.2 0.3 0.1 0.2 0.3
K(i K1

21 
V1

--1 I

Fig. IV-27. Unstable spectra for slow magnetoacoustic
waves. Contours of constant 2R and I.
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(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

ion acoustic waves at an angle goes up. Hence, for a fixed U, the most unstable ion

acoustic wave is that parallel to the magnetic field (cf. Eq. 3 and Fig. IV-28). The

maximum growth rate of the parallel ion acoustic wave will occur at K m 0. 5(2T/A) 1 /2

5

4

1 /

1) 2 3 4 5 6 7 8 \ 9 101 12 \ 14

S 2 04 .5 10.6 10.7 0.7\ 10.6 0.5\ 041 0.2 0.0
I/ \

0 I 2 0.72 3 4 5 6

(a)

2 3\ 5\\

)o~io
\ /. S0.1101 /0.2 0 0.2 , .10.28 1J.

" \

0.2 10.1

0 0.33-O.32
K11

(d)

Fig. IV-28. Unstable ion acoustic spectra.
stant 0R and 0 .

Contours of con-

The extent of the unstable ion acoustic spectrum parallel to the magnetic field can be

found by solving Eq. 4 with i21 = 0. The KII for which this occurs is given by

(6)
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(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

From this we see that the extent of the turbulent spectrum depends strongly on the mag-

netic field and only weakly on temperature and drift velocity. In Fig. IV-28a and 28b

where the current was kept constant, we note that lowering the magnetic field broadens

the unstable spectrum (normalized) and increases the maximum growth rate. On the

other hand, comparing Fig. IV-28b, 28c, and 28d where the current is increased while

the magnetic field is kept constant, we see that the unstable spectrum (normalized) also

has an increasing maximum growth rate, but becomes narrower in k space.

The spectra in Fig. IV-28 are not complete for e > 80* because approximately beyond

2 3

SCs/Vi
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-

2 3

0

0.150

Qi -

0.100
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0
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S
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Fig. IV-29. Unstable ion-cyclotron harmonic spectra. Contours of con-
stant 02R and 01 when 6 = 800.
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(IV. PLASMAS AND CONTROLLED NUCLEAR FUSION)

this angle cyclotron harmonic waves begin to occur, and it is impractical to plot them

on (Kl, KI) diagrams.

We shall now discuss cyclotron harmonic waves. These can be derived from Eq. 1

by making the same assumptions as in the ion-acoustic case, except that now we assume

QR ~ N, where N is the Nt h cyclotron harmonic. In that case we obtain

R c N {i +[T- / N !] (KI / 4 )N}
(7)

S (/M1/2 K2/4 N [N/KN1! 1+ (MT3 1/2 2/4 N 1 /N!

The solution in Eq. 7 is restricted to rather low harmonic numbers because otherwise

K I exceeds unity. Also, it can be seen from Fig. IV-29 that at steep angles to Bo a mix-

ture of ion-cyclotron harmonic waves, as well as ion acoustic waves, is frequently

encountered. The transition between these two types of wave has a complicated depen-

dence upon plasma parameters, and is not yet fully understood.

The velocity needed to induce unstable cyclotron harmonic waves has been given by

Kindel and Kennel. 4 They found that the ion cyclotron harmonic waves have a lower

threshold than the ion acoustic waves when 0. 1 < T /T i < 8. Hence in the Tokamak
el

TM-3 the parallel ion acoustic waves have the lowest threshold.

In conclusion, we have established the detailed spectra for unstable waves in a homo-

geneous plasma with parameters corresponding to experiments in the Tokamak TM-3.

From these we find that keeping Ioe constant and lowering Bo broadens and heightens the

growing spectrum. We may therefore expect that the observed heating of a small per-

centage of the ions may be explained by quasilinear diffusion into the tail of the distribu-

tion function. On the other hand, for experiments in which B is kept fixed and I is
0 oe

increased, the narrowing and heightening of the unstable spectrum would favor a model

of ion heating by trapping. These conclusions must, of course, be substantiated by

detailed nonlinear model calculations.
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