75 research outputs found

    Non-catalytic bromination of benzene: a combined computational and experimental study

    Get PDF
    The non-catalytic bromination of benzene is shown experimentally to require high 5-14M concentrations of bromine in order to proceed at ambient temperatures to form predominantly bromobenzene, along with detectable (The non-catalytic bromination of benzene is shown experimentally to require high 5-14M concentrations of bromine in order to proceed at ambient temperatures to form predominantly bromobenzene, along with detectable (The non-catalytic bromination of benzene is shown experimentally to require high 5-14M concentrations of bromine in order to proceed at ambient temperatures to form predominantly bromobenzene, along with detectable

    A protocol for analysis of the quantitative characteristics of leaf pubescence in potato

    Get PDF
    Plant leaf pubescence is one of the important features, which is responsible for microclimate formation near the epidermis. It is involved in protection against adverse biotic and abiotic environmental factors. In Solanaceae, to which belongs the potato Solanum tuberosum L., leaf pubescence appears as multicellular unbranched trichomes of diverse size and morphology. Pubescence of this plants promotes resistance to insect pests, in particular, Colorado potato beetle and aphid, which is a carrier of viral diseases. During the process of breeding and genetic experiments, there is a need to assess the intensity of leaf pubescence of potato plants. For this task, micrographs taken under a microscope are commonly used. They are used to count different types of trichomes on the leaf surface to characterize the intensity of potato leaf pubescence. This approach requires visual counting of trichomes under a microscope and is fairly laborious. This protocol describes a rapid technology for quantitative assessment of the characteristics of potato pubescence (the number of trichomes on the leaf surface and the average length of trichomes) to solve the problems of genetics and breeding of this plant. It consists of a preparation technology, digital imaging of leaf folds with an optical microscope in transmitted light and subsequent automatic processing of images using the LHDetect2 software

    Analysis of color and texture characteristics of cereals on digital images

    Get PDF
    The color of the grain shell of cereals is an important feature that characterizes the pigments and metabolites contained in it. The grain shell is the main barrier between the grain and the environment, so its characteristics are associated with a number of important biological functions: moisture absorption, grain viability, resistance to pre-harvest germination. The presence of pigments in the shell affects various technological properties of the grain. Color characteristics, as well as the appearance of the grain shell are an important indicator of plant diseases. In addition, the color of the grains serves as a classifying feature of plants. Genetic control of the color formation of both grains and other plant organs is exerted by genes encoding enzymes involved in the biosynthesis of pigments, as well as regulatory genes. For a number of pigments, these genes are well understood, but for some pigments, such as melanin, which causes the black color of grains in barley, the molecular mechanisms of biosynthesis are still poorly understood. When studying the mechanisms of genetic control of grain color, breeders and geneticists are constantly faced with the need to assess the color characteristics of their shell. The technical means of addressing this problem include spectrophotometers, spectrometers, hyperspectral cameras. However, these cameras are expensive, especially with high resolution, both spatial and spectral. An alternative is to use digital cameras that allow you to get high-quality images with high spatial and color resolution. In this regard, recently, in the field of plant phenotyping, methods for evaluating the color and texture characteristics of cereals based on the analysis of two-dimensional images obtained by digital cameras have been intensively developed. This mini-review is devoted to the main tasks related to the analysis of color and texture characteristics of cereals, and to methods of their description based on digital images

    Direct Introduction of a Dimesitylboryl Group Using Base-Mediated Substitution of Aryl Halides with Silyldimesitylborane

    Get PDF
    The first dimesitylboryl substitution of aryl halides with a silylborane bearing a dimesitylboryl group in the presence of alkali-metal alkoxides is described. The reactions of aryl bromides or iodides with Ph2MeSi-BMes(2) and Na(OtBu) afforded the desired aryl dimesitylboranes in good to high yields and with high borylation/silylation ratios. Selective reaction of the sterically less-hindered C-Br bond of dibromoarenes provided monoborylated products. This reaction was used to rapidly construct a D-pi-A aryl dimesityl borane with a non-symmetrical biphenyl spacer

    SpikeDroidDB: AN INFORMATION SYSTEM FOR ANNOTATION OF MORPHOMETRIC CHARACTERISTICS OF WHEAT SPIKE

    Get PDF
    The structure of the ear is one of the most important features of cereals associated with such agronomically important traits as productivity, resistance to environmental factors and pests, threshebility. Ears differ in shape, size, density, awnedness, color, etc. Analysis of the ear traits requires visual inspection, manual measurements and is very time-consuming. The effectiveness of ears’ phenotyping can be improved by the introduction of an automated image processing technology, storage of information in databases, use of machine learning algorithms to analyze this information. This paper presents a new approach for collecting, storing and analyzing of information about morphometric characteristics of ears of wheat. Two protocols for obtaining digital images of the ear have been developed. The computer-aided information system SpikeDroidDB has been developed, which allows you to store digital images of the ear, annotate their phenotypic features (14 features, including plant variety description, links to parent genotypes, generation, planting number, ear morphology description). The interface provides a flexible query system to access the data. SpikeDroidDB represents an interconnected representation between genotype, phenotype, location, and growing conditions. The web interface of SpikeDroidDB is available at http://spikedroid.biores. cytogen.ru/ and allows you to work with the system as with desktop computers or mobile devices. We used SpikeDroidDB for the digitization and annotation of a collection of ears of F2 hybrids from crosses between the Australian cultivar of common wheat Triple Dirk and accession KU506 of Chinese wheat Triticum yunnanense. This experiment includes analysis of 104 plants, 230 spike images. The analysis of the variability of ears in form, length, and other traits allowed determination of the type of their genetic control: compactness is controlled by two recessive genes, awn type and hairi ness at the site of attachment of the spikelet to the axis is controlled by single dominant gene type, hairiness on the axis of the spike is controlled by two dominant genes

    A Novel Small Molecule Supports the Survival of Cultured Dopamine Neurons and May Restore the Dopaminergic Innervation of the Brain in the MPTP Mouse Model of Parkinson's Disease

    Get PDF
    We previously showed that monoterpenoid (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol 1 alleviates motor manifestations of Parkinson's disease in animal models. In the present study, we designed and synthesized monoepoxides of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol 1 and evaluated their biological activity in the MPTP mouse model of Parkinson's disease. We also assessed the ability of these compounds to penetrate the blood-brain barrier (BBB). According to these data, we chose epoxide 4, which potently restored the locomotor activity in MPTP-treated mice and efficiently penetrated the BBB, to further explore its potential mechanism of action. Epoxide 4 was found to robustly promote the survival of cultured dopamine neurons, protect dopamine neurons against toxin-induced degeneration, and trigger the mitogen-activated protein kinase (MAPK) signaling cascade in cells of neuronal origin. Meanwhile, neither the survival-promoting effect nor MAPK activation was observed in non-neuronal cells treated with epoxide 4. In the MPTP mouse model of Parkinson's disease, compound 4 increased the density of dopamine neuron fibers in the striatum, which can highlight its potential to stimulate striatal reinnervation and thus halt disease progression. Taken together, these data indicate that epoxide 4 can be a promising compound for further development, not only as a symptomatic but also as a neuroprotective and neurorestorative drug for Parkinson's disease.Peer reviewe

    Automatic morphology phenotyping of tetra- and hexaploid wheat spike using computer vision methods

    Get PDF
    Intraspecific classification of cultivated plants is necessary for the conservation of biological diversity, study of their origin and their phylogeny. The modern cultivated wheat species originated from three wild diploid ancestors as a result of several rounds of genome doubling and are represented by di-, tetra- and hexaploid species. The identification of wheat ploidy level is one of the main stages of their taxonomy. Such classification is possible based on visual analysis of the wheat spike traits. The aim of this study is to investigate the morphological characteristics of spikes for hexa- and tetraploid wheat species based on the method of high-performance phenotyping. Phenotyping of the quantitative characteristics of the spike of 17 wheat species (595 plants, 3348 images), including eight tetraploids (Triticum aethiopicum, T. dicoccoides, T. dicoccum, T. durum, T. militinae, T. polonicum, T. timopheevii, and T. turgidum) and nine hexaploids (T. compactum, T. aestivum, i:ANK-23 (near-isogenic line of T. aestivum cv. Novosibirskaya 67), T. antiquorum, T. spelta (including cv. Rother Sommer Kolben), T. petropavlovskyi, T. yunnanense, T. macha, T. sphaerococcum, and T. vavilovii), was performed. Wheat spike morphology was described on the basis of nine quantitative traits including shape, size and awns area of the spike. The traits were obtained as a result of image analysis using the WERecognizer program. A cluster analysis of plants according to the characteristics of the spike shape and comparison of their distributions in tetraploid and hexaploid species showed a higher variability of traits in hexaploid species compared to tetraploid ones. At the same time, the species themselves form two clusters in the visual characteristics of the spike. One type is predominantly hexaploid species (with the exception of one tetraploid, T. dicoccoides). The other group includes tetraploid ones (with the exception of three hexaploid ones, T. compactum, T. antiquorum, T. sphaerococcum, and i:ANK-23). Thus, it has been shown that the morphological characteristics of spikes for hexaploid and tetraploid wheat species, obtained on the basis of computer analysis of images, include differences, which are further used to develop methods for plant classifications by ploidy level and their species in an automatic mode

    Stereoselective Arene-Forming Aldol Condensation: Catalyst-Controlled Synthesis of Axially Chiral Compounds

    Get PDF
    The fundamental role that aldol chemistry adopts in various disciplines, such as stereoselective catalysis or the biosynthesis of aromatic polyketides, illustrates its exceptional versatility. On the one hand, numerous aldol addition reactions reliably transfer the stereochemical information from catalysts into various valuable products. On the other hand, countless aromatic polyketide natural products are produced by an ingenious biosynthetic machinery based on arene-forming aldol condensations. With the aim of complementing aldol methodology that controls stereocenter configuration, we recently combined these two tenets by investigating small-molecule-catalyzed aldol condensation reactions that stereoselectively form diverse axially chiral compounds through the construction of a new aromatic ring

    Image-based analysis of quantitative morphological characteristics of wild potato tubers using the desktop application SeedСounter

    Get PDF
    The development of quantitative digital phenotyping methods for evaluation of wild potato (section Petota Dumort., genus Solanum L.) tuberization is required for annotation of genebank collections and selection of the suitable donor material for potato breeding. There are no available methods specifically designed for the quantitative analysis of wild potato tuber morphology. The current study is devoted to evaluation of wild potato tubers’ morphological characteristics using a digital image processing technique. For this purpose, the mobile application SeedSounter developed previously for grain analysis was specifically adapted for tuber phenotyping. The application estimates the number and shape of objects scattered on a standard sheet of white paper (i. e. A3 or A4). Twelve accessions from the VIR genebank collection belonging to nine Petota species were grown in pots protected with garden fabric during the growing season of cultivated potato (Novosibirsk region). Tubers were collected form plants of nine genotypes. Three genotypes did not produce tubers. The weight of tubers collected from each plant was measured. The tuber yield from each plant was analyzed using SeedCounter (http://wheatdb.org/seedcounter). The number of tubers per plant was counted; the following characteristics were extracted from the images of individual tubers: length, width, projected area, length to width ratio, сircularity, roundness, rugosity and solidity. One-way ANOVA showed a significant effect of genotype on all measured characteristics. A pairwise comparison of nine Petota accessions using all measured parameters revealed statistically significant differences between 86 % of pairs. The overall tuber yield volume for each plant was  calculated as a sum of volumes of individual tubers; tuber volume was calculated from its length to width ratio and projected area. A strong correlation between the evaluated tuber yield volume and yield weight was shown. We propose tuber yield volume as a characteristic for a general evaluation of tuberization for wild potato, implementing the four-step scale from 0 to 3. According to this characteristic, the twelve wild potato accessions studied could be divided into four groups with different tuberization abilities. The evaluated tuberization ability is partially in accordance with previously obtained VIR data. The results presented demonstrate the possibility to use SeedCounter for  wild potato  collections phenotyping
    corecore