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Abstract. The color of the grain shell of cereals is an important feature that characterizes the pigments and 
meta bolites contained in it. The grain shell is the main barrier between the grain and the environment, so its 
characteristics are associated with a number of important biological functions: moisture absorption, grain vi-
ability, resistance to pre-harvest germination. The presence of pigments in the shell affects various technologi-
cal properties of the grain. Color characteristics, as well as the appearance of the grain shell are an important 
indicator of plant diseases. In addition, the color of the grains serves as a classifying feature of plants. Genetic 
control of the color formation of both grains and other plant organs is exerted by genes encoding enzymes 
involved in the biosynthesis of pigments, as well as regulatory genes. For a number of pigments, these genes 
are well understood, but for some pigments, such as melanin, which causes the black color of grains in bar-
ley, the molecular mechanisms of biosynthesis are still poorly understood. When studying the mechanisms of 
genetic control of grain color, breeders and geneticists are constantly faced with the need to assess the color 
characteristics of their shell. The technical means of addressing this problem include spectrophotometers, 
spectrometers, hyperspectral cameras. However, these cameras are expensive, especially with high resolution, 
both spatial and spectral. An alternative is to use digital cameras that allow you to get high-quality images 
with high spatial and color resolution. In this regard, recently, in the field of plant phenotyping, methods for 
evaluating the color and texture characteristics of cereals based on the analysis of two-dimensional images 
obtained by digital cameras have been intensively developed. This mini-review is devoted to the main tasks 
related to the analysis of color and texture characteristics of cereals, and to methods of their description based 
on digital images.
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Аннотация. Цвет оболочки зерен злаков – важный признак, характеризующий содержащиеся в ней пиг-
менты и метаболиты. Оболочка зерна служит основным барьером между зерном и внешней средой, 
поэтому с ее характеристиками связан ряд важных биологических функций: поглощение влаги, жиз-
неспособность зерна, устойчивость к предуборочному прорастанию. Наличие пигментов в оболочке 
влияет на различные технологические свойства зерна. Цветовые характеристики, как и внешний вид 
оболочки зерна, – важный индикатор заболеваний растений. Цвет зерна давно используется в систе-
матике пшеницы для описания ее ботанических разновидностей, и для некоторых систем это одна из 
основных характеристик. Генетический контроль формирования окраски зерен и других органов рас-
тений осуществляется генами, кодирующими ферменты, вовлеченные в биосинтез пигментов, и регуля-
торными генами. Для ряда пигментов эти гены исследованы достаточно хорошо, однако для некоторых 
пигментов, например меланина, обусловливающего черную окраску зерен у ячменя, молекулярные 
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механизмы биосинтеза еще слабо изучены. При исследовании механизмов генетического контроля 
окраски зерен селекционеры и генетики постоянно сталкиваются с необходимостью оценки цветовых 
характеристик их оболочки. К техническим средствам решения этой задачи относятся спектрофотомет-
ры, спектро метры, гиперспектральные камеры. Однако эти камеры дорогостоящие, в особенности с 
высоким разрешением, как пространственным, так и спектральным. Альтернативой является исполь-
зование цифровых фотокамер,  позволяющих получать высококачественные изображения с высоким 
пространственным и цветовым разрешением. В связи с этим в последнее время в области фенотипиро-
вания растений интенсивно развиваются методы оценки цветовых и текстурных характеристик зерен 
злаков, основанные на анализе двумерных изображений, полученных цифровыми камерами. Данный 
мини-обзор посвящен основным задачам, связанным с анализом цветовых и текстурных характеристик 
зерен злаков, методам их описания на основе цифровых изображений.
Ключевые слова: цвет; текстура; цифровые изображения; анализ изображений; зерна злаков.

introduction
The coloration of cereal grain shell is an important trait 
that characterizes the pigments and metabolites contained 
there. Violet and blue grain color is determined by an-
thocyans; yellow color, by carotenoids; and red brown 
or dark brown, by flavonoids, such as proanthocyanidins 
and phlobaphenes (Adzhieva et al., 2015; Lachman et 
al., 2017). The correlation between the shell color and 
content of the corresponding substances is experimen-
tally demonstrated. Significant correlations of the kernel 
shell color and the content of phenols, flavonoids, and 
antioxidant capacity have been observed (Shen et al., 
2009). The contents of phenols, flavonoids, anthocyans, 
β-carotenoids, and luteins significantly differ between 
the maize grains with different colors (Žilić et al., 2012). 
Flavonoids, anthocyans, and carotenoids possess several 
valuable properties. They are antioxidants, and influence 
the nutritional value. For example, addition of the wheat 
seed coats with a purple pericarp or blue aleurone layer 
to flour improves the quality of bakery products owing to 
flavor, texture, and color characteristics (Machálková et 
al., 2017). Correspondingly, the varieties and lines with 
different grain coloration recently cause a strong interest 
of the food industry (Khlestkina et al., 2017; Corrêa et 
al., 2019).

The kernel shell is the main barrier between the grain 
and environment; correspondingly, a set of important bio-
logical functions are associated with the shell properties, 
including, water absorption, grain viability, and resistance 
to pre-harvest sprouting (Souza, Marcos-Filho, 2001). 
The pigments in the grain shell influence manifold grain 
technological properties. In particular, phlobaphenes 
(condensed tannins), coloring the pericarp red, have a 
positive effect on the duration of grain dormancy, thereby 
preventing its pre-harvest sprouting (Flintham et al., 
2002). That is why the wheat genotypes with red-colored 
kernels are used in breeding as a donor of the genes con-
trolling the resistance to pre-harvest grain germination 
(Krupnov et al., 2012; Fakthongphan et al., 2016). The 
shell color of rice kernels (the intensities of red, green, 
and blue color components) correlates with the grain 

quality characteristics, such as kernel transparency and 
the share of broken kernels, in a statistically significant 
manner (Septiningsih et al., 2003).

The color characteristics and the external appearance of 
the kernel shell are important indicators of plant diseases. 
For example, fusariosis manifests as a pinky or bluish 
coloration on the wheat and barley kernel shell (McMul-
len et al., 1997). Characteristic of another disease, kernel 
black-point, is dark discoloration of the embryo side of 
grains (Draz et al., 2016).

Grain coloration may also serve as a trait in plant 
classification. As early as the late 19th century, F. Kör-
nicke suggested using the grain color for description 
of wheat botanical varieties (Körnicke, Werner, 1885). 
The N.I. Vavilov All-Russian Institute of Plant Genetic 
Resources classifies the wheat botanical varieties using 
the system in which the grain color is one of the major 
traits (Dorofeev et al., 1979).

The coloration of both the kernels and other plant 
organs is controlled by the genes coding for the en-
zymes involved in biosynthesis of pigments, as well as 
by regulatory genes (Khlestkina, 2014; Lachman et al., 
2017; Shoeva et al., 2018). The corresponding genes 
are well studied for several pigments, including even 
their complete nucleotide sequences and their positions 
in the genome. However, the molecular mechanisms of 
biosynthesis are still rather vague for some pigments, 
in particular, melanin, which determines black color of 
barley kernels (Glagoleva et al., 2017; Shoeva, 2018). 

When studying the mechanisms underlying genetic 
control of grain color, breeders and geneticists constantly 
face the necessity of estimating the color characteristics 
of their shells. Several technical tools allow this problem 
to be solved, first and foremost, spectrophotometers, able 
to characterize both the chromatic and textural charac-
teristics of kernels with a high accuracy. Spectrophoto-
meters have been long and successfully used and serve as 
a standard for estimating the color of biological objects 
(Black, Panozzo, 2004; Garg et al., 2016; Machálková et 
al., 2017).  Another approach is provided by spectrometers 
with the wavelength range covering both visible and near-
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infrared regions (hyperspectral cameras of visible and 
near-infrared ranges) (Black, Panozzo, 2004; ElMasry et 
al., 2019). However, these cameras are very expensive, 
especially, with a high spatial and spectral resolution. 
An alternative is digital cameras capturing high-quality 
images with a high spatial and color resolution. The 
price of digital cameras are constantly decreasing and 
they are now widely available, while even an amateur 
camera allows for capturing high-resolution and high 
quality images. In this regard, the methods for evaluat-
ing the color and texture characteristics of cereal grains 
based on analysis of two-dimensional digital images have 
been intensively developed recently in the field of plant 
phenotyping.

This brief review focuses on the main problems related 
to the analysis of color and texture characteristics of 
cereals and methods of their description utilizing digital 
images.

the tasks associated with the analysis of color  
and texture characteristics in kernel images
One of the relevant problems in the analysis of digital 
images of grains is related to classification. The particular 
tasks of classification may be different. For example, it is 
necessary to classify grains according to their color and 
surface texture into several different genotypes (Pourreza 
et al., 2012; Olgun el al., 2016). Frequently, the charac-
teristics of size and shape are added to the color and 
texture parameters (Majumdar, Jayas, 2000; Chaugule, 
Mali, 2014; Sabanci et al., 2016).

Another tightly associated problem is to assort the 
kernels according to color and surface texture (Pearson, 
2010); in particular, sorters are designed for mass screen-
ing of a large number of grains to separate the sound 
grains from waste and damaged grains. M. Huang et al. 
(2015) reviewed the current developments on the seed 
quality and safety tests based on image analysis, includ-
ing hyperspectral ones, and Z. Gong et al. (2015) briefly 
describe the approaches, engineering included, to the seed 
quality inspection.

Sometimes the grains are classified only by their color 
(red or white). In particular, M.S. Ram et al. (2002) used 
spectrophotometer and spectrometer to design a proce-
dure for determining the color of kernel shell in red and 
white wheats. T.N. McCaig et al. (1993) classified the 
wheat into red-grained and white-grained cultivars using 
the spectrophotometry data for 262 genotypes of both 
soft and hard wheats. Analysis of the color characteristics 
also makes it possible to identify the kernels affected by 
pathogens (Ahmad, 1999; Goriewa-Duba et al., 2018) or 
mechanically damaged (Delwiche et al., 2013). Note that 
machine learning and artificial intelligence techniques 
are also frequently used along with the image analysis 
in solving the relevant problems (Patrício, Rieder, 2018); 

however, the description of these methods is beyond the 
area of our review.

Color coding systems
The color of the surface is a characteristic of its spectral 
reflectivity, which is determined by many factors, such 
as absorption of radiation of a light source at different 
wavelengths, its reflection, and scattering (Forsyth, Pons, 
2004). Spectrometers give the fullest estimate of the re-
flection and absorption characteristics in different ranges 
of wavelengths. As for the most of the digital cameras, 
their sensors respond to reflected radiation in the visible 
wavelength range (400–780 nm). Note that the color 
perception by the human eye has its specific features 
associated with its structure: there is no one-to-one cor-
respondence between the surface color perception by the 
eye and the spectral characteristics of this surface; for 
example, the same shade of gray can be reproduced by 
the reflected radiation with completely different intensi-
ties for different wavelengths.

When studying the human perception, it was found out 
that three main colors – red, green, and blue – are suffi-
cient to get the overall set of colors perceived by humans 
by mixing them in different proportions (Forsyth, Pons, 
2004). This inference is confirmed by the structure of 
the human eye itself since the eye retina comprises three 
types of receptors (retinal cones) responsible for color  
vision.

Different models (color spaces) have been elaborated 
to digitally represent colors. Color model specifies the 
system of coordinates that unambiguously determines 
colors. Several different color models have been deve-
loped to provide the best method of color description 
for TV, photo, video, and color printing. The following 
systems are most frequently used when analyzing digital 
images of plants.

The RGB color model is the most well known color 
space, encoding a broad array of colors by relative in-
tensities of its three components: red (R), green (G), and 
blue (B). These components are described by integers, 
most frequently from 0 to 256. The higher the values, 
the higher is the intensity of color (luminance). The co-
lors with equal values of the components are the shades 
of gray. This representation is used mainly in computer 
screens and digital cameras.

The HSV (HSB) model is a color space also using three 
color components, proposed in the mid-1970s. The hue 
component (H) varies from 0 to 360; the values close to 0 
and 360 correspond to red; close to 60, to yellow; 120, to 
green; 180, to cyan; 240, to blue; and 300, to magenta. 
Saturation (S) is the larger, the more saturated is the color 
tone, while small values of this parameter correspond to 
the shades of gray. Brightness (value, B/V) takes on the 
smaller values for the dark colors and larger, for bright 
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ones. One of the shortcomings of the HSV and RGB 
consists in that the number of saturation and color tint 
levels perceptible to eye in these spaces decreases when 
brightness approaches zero.

The CIE L*a*b* space, proposed in 1976 by the 
International Commission on Illumination (CIE), was 
designed to approximate the human vision and to provide 
perceptual uniformity. Similar to HSV, the brightness 
component in CIE L*a*b* (L* component) is separated 
from the chromatic component of color (Pathare et al., 
2013) and is an approximate estimate of brightness. The 
a* parameter takes on the positive values for reddish tints 
and negative values for greenish ones; the b* parameter 
is positive for the yellowish tints and negative for the 
bluish ones. This color model is widely used in software 
solutions for image processing and color correction. The 
CIE L*a*b* space is used for assessing the color charac-
teristics in spectrophotometers.

The characteristics of other color spaces with their de-
scription are available in specialized literature on image 
analysis (Fisenko V.T., Fisenko T.Yu., 2008; Domasev, 
Gnatyuk, 2009). The components of the same color in 
different systems are linked by transformation rules, so 
that knowing the values of the chromatic components 
for a color tint in one space, the corresponding values 
for another space are obtainable. For example, the values 
for the RGB components make it possible to compute 
the values for the HSV components and vice versa. This 
allows the color representation for a particular image to 
be selected depending on the particular task.

When solving a problem of machine vision and analysis 
of chromatic characteristics, the HSV and L*a*b* color 
models are of the principal interest since these systems 
represent colors in the same terms as a human does when 
describing a color, namely, hue, saturation, and bright-
ness (lightness).

analysis of color characteristics of kernels
The images used for analyzing kernels are as a rule cap-
tured by digital cameras in the RGB space shot under 
laboratory conditions using a controlled illumination. 
The kernels in images are typically placed onto a contrast 
background at a distance from one another (Sabanci et al., 
2017; Goriewa-Duba et al., 2018). This protocol makes it 
possible to analyze not only the color and surface texture 
characteristics, but also the kernel shape and size. More-
over, bulk specimens are used in some studies (Pourreza 
et al., 2012; Olgun et al., 2016) in which the kernels lie in 
a dense grain touching one another. As a rule, the textural 
and chromatic characteristics of the bulk specimen are 
assessed in this approach rather than individual kernels.

In the case the individual kernels are analyzed, first, 
their local images are isolated in the integral image. 
For this purpose, the images are preprocessed (using 

despeckle and removal of noise and foreign objects) and 
segmented to identify the regions of the image that cor-
respond to individual kernels. Then, the quantitative traits 
available from images are extracted from these regions. 
Note that it is rather difficult to control the illumination 
conditions, especially when the images are captured 
outside laboratory (Berry et al., 2018). Correspondingly, 
color correction procedure using color patterns (a set of 
cards with cells of specified standard colors) is helpful 
(Berry et al., 2018; Genaev et al., 2019; Alemu et al., 
2020).

In an image, the regions corresponding to individual 
kernels comprise hundred of pixels, each displaying its 
own color characteristics in a selected color space (for 
example, three values of the R, G, and B components). 
That is why statistical characteristics of color components 
are most frequently used for description of the color of 
these objects. First and foremost, the histograms of pixel 
distribution according to the intensity of each color com-
ponent independently of the other components and the 
location of pixels in the image are computed. The histo-
grams are used to calculate the other parameters, such as 
the mean value, variance, asymmetry, and the kurtosis of 
pixel intensities for each color component (Ahmad et al., 
1999; Majumdar, Jayas, 2000). These values are further 
utilized to describe the color properties of kernels.

In particular, T. Pearson and D. Brabec (2008) de-
veloped a system of machine vision for an automated 
estimation and sorting of the kernels of wheat and other 
cereals in a real-time mode. The images with a resolution 
of 640 × 480 pixels were captured with a digital camera 
and transferred to a PC, which, after classification, output 
a signal to an air valve to correspondingly sort the kernels. 
The intensity histograms as well as the mean and stan-
dard deviations of the RGB channel intensities (in total, 
198 characteristics for each kernel) were used for clas-
sification by linear discriminant analysis. The accuracy 
of the system when classifying red and white kernels of 
hard wheat was 94 to 99 % depending on the wheat cul-
tivar, feeding rate, and number of classification characte- 
ristics.

N.S. Visen et al. (2002) compared the accuracy of 
different architectures of simple and specialist neural 
networks in the classification of cereals. Morphological 
and chromatic characteristics of wheat, barley, oat, and 
rye kernels calculated using color images captured with 
a CCD camera were used as the input data. The gray 
features: mean, median, mode, and standard deviation 
of gray-level values of the objects in the image – were 
extracted and used as the input data. The best mean clas-
sification accuracy of 98 % was obtained using specialist 
probabilistic neural networks.

K. Goriewa-Duba et al. (2018) used the digital images 
of the kernels of six wheat species acquired with a flatbed 
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CCD scanner to analyze the shape and color. They as-
sessed the effect of grain colonization by endophytic fungi 
on the color of the seed coat as well as estimated the wheat 
subspecies with a high genetic variation. The images were 
analyzed using the ImageJ software to assess the shape 
characteristics, such as area, perimeter, Feret diameter, 
circularity, aspect ratio, roundness, and solidity. The color 
descriptors included the mean values for the RGB, HSI, 
and L*a*b* channels. The principal component analysis 
of the kernels with different genotypes has shown that 
their color characteristics significantly contribute to the 
first variance component and are among the most impor-
tant when classifying wheats into different genotypes.

A. Alemu et al. (2020) analyzed the genome-wide 
associations of nucleotide substitutions (GWAS) in the 
population of 192 hard wheat (Triticum durum) genotypes 
from Ethiopia with grain shape and color traits. Grain 
length and width were used to describe the kernel shape 
and the mean values of the L*a*b* components to de-
scribe the color. In total, 11 quantitative trait loci (QTLs) 
were detected for the color characteristics; the locus for 
the a* component resides on chromosome 2A; five loci 
for the b* component, on chromosomes 1B, 3A, 4B, 5A, 
and 7B; and five for the L* component, on chromosomes 
1A, 2A, 7A, and 7B.

Characteristics of the image texture used  
when analyzing kernels
Another characteristic of the surface is its texture, which 
is the image component that reflects the visual properties 
of these surfaces or objects (bumpiness and the presence 
of regular patterns). The concept of texture is difficult to 
formalize since it to a considerable degree depends on the 
scale and has not any limitations on the basis of which 
it is formed. A leaf in an image is an object and the foli-
age is a texture. It is possible to separate simple textures 
that are formed of ordered patterns or textons (Forsyth, 
Pons, 2004). A distinctive feature of a simple texture is its 
regularity and repeated or partially reproduced elements 
on a certain surface or object. Other textures may have a 
considerably more complex structure.

The approaches more intricate as compared with the 
color analysis are used to describe textures since the 
texture is characterized by mutual spatial arrangement 
of pixels with different intensities of their color com-
ponents. Both the color and texture characteristics can 
be determined utilizing statistical methods to assess the 
parameters of the histograms of the initial image, such 
as, the mean, variance, asymmetry, and kurtosis. For 
simplicity, the images are described in the gray scale, i. e., 
the description is reduced from pixel color characteris-
tics (three components) to its total intensity alone (one 
component, I(x, y), where x and y are the coordinates of 
pixel). The gray level co-occurrence matrix (GLCM) is 

used for this purpose (Supplementary Materials, Table 1, 
Eq. (1))1, which is a second order histogram (Haralick 
et al., 1973). The second order means that the matrix de-
scribes the distribution of intensities for the pairs of pixels 
of an image with specific values. Thus, the combinations 
of intensities for these pairs are taken into account. See 
V.G. Asta furov et al. (2014) for an example of compu-
tation of a GLCM. The GLCM is then used to extract 
the statistics for the distribution of its elements, such as 
uniformity, homogeneity, moments of inertia, correlation, 
different mean values, variance, and entropy (see Supple-
mentary Materials, Table 2) (Majumdar, Jayas, 1999).

The gray level run length matrix (GLRM; see Supple-
mentary Materials, Table 1, Eq. (2)) is constructed based 
on the information about the run length of the pixels with 
equal intensity (Galloway, 1975). These run lengths can 
be specified by different levels of intensities and the tra-
versal direction from one pixel to another. GLRM allows 
for computation of the statistics, such as inhomogeneity 
of gray level, inhomogeneity of run lengths, coefficient of 
runs, entropy, inverse moment of short runs, moment of 
long runs, and other characteristics (Haralick et al., 1979).

The third approach relies on the model-based inter-
pretation of texture, for example, a method based on 
autoregressive model parameters in which the intensity 
of a pixel is predicted as the weighted sum of four in-
tensities of the neighboring pixels (Szczypiński et al., 
2015). Several methods for texture description utilize 
Fourier, Gabor, or wavelet transform to characterize the 
spatial arrangement of the pixels of different intensities 
in the image from its frequency characteristic or wavelet 
components (Szczypiński et al., 2009). In general, the 
above briefed characteristics make it possible to form 
over a hundred of digital traits of image textures. As 
a rule, only part of these characteristics is used in the 
relevant literature.

An example of the use of texture characteristics in 
kernel analysis is the study by A. Pourreza et al. (2012). 
Images of nine wheat cultivars in a container illuminated 
with a fluorescent lamp were analyzed. The matrices 
(GLCM and GLRM) were computed for the gray scale 
images. Three additional characteristics were used; these 
characteristics are determined by the difference between 
the intensity of the central pixel from the intensities of the 
neighboring pixels in a 3 × 3 matrix. The local similarity 
patterns (LSPs; see Supplementary Materials, Table 1, 
Eq. (3)) are calculated from the difference in the intensi-
ties between the central and neighboring pixels. If the 
difference is below the SRR threshold, the LSP of the 
neighboring pixel is set equal to unity; otherwise, zero. 
A clockwise traversal of eight pixels gives a vector of 
zeros and unities, which characterizes the correspondence 

1 Supplementary Materials are available in  
https://vavilov.elpub.ru/jour/manager/files/SupplKomyshev_engl.pdf    
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of the intensity of the central pixel and all its neighbors. 
Another parameter in this work is local binary patterns 
(LBPs; see Supplementary Materials, Table 1, Eq. (4)), 
which were computed taking into account the weight coef-
ficients of the neighboring pixels multiplied by LSP vector 
components. Finally, one more texture characteristics was 
the local similarity number (LSN; see Supplementary 
Materials, Table 1, Eq. (5)), which is the number of pixels 
with an intensity similar to that of the central pixel in the 
square of N × N.

Then, different statistics were calculated for the above 
textural features (mean, standard deviation, entropy, etc.; 
in total, 131 features). Some of them were based on the 
histogram gray level quantification (25 histogram bands). 
As was demonstrated, the textural features were most 
effective in classifying the cultivars as compared with 
the other characteristics. Six of the nine cultivars were 
identified with a 100 % accuracy; two of the remained 
cultivars were identified with 96 % accuracy. The use 
of the characteristics obtained from the LBP, LSP, and 
LSN matrices improved the classification accuracy as 
compared with the earlier studies. In total, 54 % of the 50 
main textural features were selected from LBP, LSP, and 
LSN groups. The authors also conclude that the charac-
teristics of feature distribution considerably contributed 
to identification of wheat cultivars.

K. Sabanci et al. (2017) describes a machine vision 
system for distinguishing of kernels between the durum 
and bread wheats. The used visual characteristics include 
size (length, width, perimeter, and area), color (R, G, and 
B), and texture (contrast, correlation, energy, homoge-
neity, and entropy); in addition, nine characteristics were 
calculated from the main ones. In tests, the simplified 
classifier identifies the grain type with an accuracy of 
99.46 % and sorts the wheat kernels with an accuracy of 
100 %. For training and verification, images of 200 wheat 
kernels (100 of bread wheat and 100 of durum wheat) 
were captured by a high-resolution camera.

Conclusions
Spectrophotometers, spectrometers, and hyperspectral 
cameras are efficient and reliable tools for analysis and 
estimation of cereal kernels. However, they are expensive, 
especially those with a high resolution, both spatial and 
spectral. An alternative is digital cameras capturing high-
quality images with a high spatial and color resolution. 
Although the precieved spectrum of the currently avail-
able digital cameras is limited, the studies have shown 
that they can be effectively used as a reliable and precise 
tool for solving manifold applied problems. A high spatial 
and color resolution of such cameras makes it possible 
to analyze the textural characteristics of cereal kernels in 
detail. The textural characteristics are supplemented with 
color characteristics represented in different color models.

Thus, the use of color and textural characteristics in 
the analysis of digital images of cereal kernels allow 
for an efficient resolution of several important problems 
in their classification, sorting, and identification of di- 
seases.
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