45 research outputs found

    corr2D: Implementation of Two-Dimensional Correlation Analysis in R

    Get PDF
    In the package corr2D two-dimensional correlation analysis is implemented in R. This paper describes how two-dimensional correlation analysis is done in the package and how the mathematical equations are translated into R code. The paper features a simple tutorial with executable code for beginners, insight into the calculations done before the correlation analysis, a detailed look at the parallelization of the fast Fourier transformation based correlation analysis and a speed test of the calculation. The package corr2D offers the possibility to preprocess, correlate and postprocess spectroscopic data using exclusively the R language. Thus, corr2D is a welcome addition to the toolbox of spectroscopists and makes two-dimensional correlation analysis more accessible and transparent

    IR Spectroscopy as a Method for Online Electrolyte State Assessment in RFBs

    Get PDF
    Abstract The transition from fossil to renewable energy sources requires adequate storage technologies due to the intermittency of the supplied energy. With respect to this, organic redox‐flow batteries (ORFBs) represent a promising concept for the storage of electricity on a large scale at economically justifiable costs. However, these storage technologies can only be operated reliably if parameters representing the actual condition of the storage medium (i.e., the electrolyte) can be accurately assessed. These so‐called electrolyte state variables are represented by two key figures of merit: state of charge (SOC), a measure of the amount of charge that the electrolyte currently holds; and state of health (SOH), representing the amount of charge that the electrolyte is able to store given its current condition. The herein presented IR‐based approach is able to simultaneously provide reliable, fast, accurate, and precise estimates for both SOC and SOH parameters at any point in time and independent of the current battery status. The method is able to provide a time resolution in the range of minutes, is independent of the electrolyte temperature and can be applied to nearly all organic‐based redox‐active materials and solvents, while potentially being applicable to inorganic RFBs, such as vanadium‐based systems, as well.Redox‐flow batteries (RFBs) provide a unique and scalable storage solution for green energy. However, they can only be operated safely when parameters representing the battery state are precisely known at any point in time. The presented IR‐spectroscopic method is able to generate accurate and precise estimates for the crucial State‐of‐Charge and State‐of‐Health variables of RFB electrolytes. imag

    Bidentate Rh(I)-phosphine complexes for the C-H activation of alkanes: computational modelling and mechanistic insight

    Get PDF
    The C-H activation and subsequent carbonylation mediated by metal complexes, i. e., Rh(I) complexes, has drawn considerable attention in the past. To extend the mechanistic insight from Rh complexes featuring monodentate ligands like P(Me)3 towards more active bisphosphines (PLP), a computationally derived fully conclusive mechanistic picture of the Rh(I)-catalyzed C-H activation and carbonylation is presented here. Depending on the nature of the bisphosphine ligand, the highest lying transition state (TS) is associated either to the initial C-H activation in [Rh(PLP)(CO)(Cl)] or to the rearrangement of the chloride in [Rh(PLP)(H)(R)(Cl)]. The chloride rearrangement was found to play a key role in the subsequent carbonylation. A set of 20 complexes of different architectures was studied, in order to fine tune the C-H activation in a knowledge-driven approach. The computational analysis suggests that a flexible ligand architecture with aromatic rings can potentially increase the performance of Rh-based catalysts for the C-H activation

    State of charge and state of health assessment of viologens in aqueous-organic redox-flow electrolytes using in situ IR spectroscopy and multivariate curve resolution

    Get PDF
    Aqueous-organic redox flow batteries (RFBs) have gained considerable interest in recent years, given their potential for an economically viable energy storage at large scale. This, however, strongly depends on both the robustness of the underlying electrolyte chemistry against molecular decomposition reactions as well as the device's operation. With regard to this, the presented study focuses on the use of in situ IR spectroscopy in combination with a multivariate curve resolution approach to gain insight into both the molecular structures of the active materials present within the electrolyte as well as crucial electrolyte state parameters, represented by the electrolyte's state of charge (SOC) and state of health (SOH). To demonstrate the general applicability of the approach, methyl viologen (MV) and bis(3-trimethylammonium)propyl viologen (BTMAPV) are chosen, as viologens are frequently used as negolytes in aqueous-organic RFBs. The study's findings highlight the impact of in situ spectroscopy and spectral deconvolution tools on the precision of the obtainable SOC and SOH values. Furthermore, the study indicates the occurrence of multiple viologen dimers, which possibly influence the electrolyte lifetime and charging characteristics

    Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date?

    Get PDF
    Research into the mechanisms by which proteins fold into their native structures has been on-going since the work of Anfinsen in the 1960s. Since that time, the folding mechanisms of small, water-soluble proteins have been well characterised. By contrast, progress in understanding the biogenesis and folding mechanisms of integral membrane proteins has lagged significantly because of the need to create a membrane mimetic environment for folding studies in vitro and the difficulties in finding suitable conditions in which reversible folding can be achieved. Improved knowledge of the factors that promote membrane protein folding and disfavour aggregation now allows studies of folding into lipid bilayers in vitro to be performed. Consequently, mechanistic details and structural information about membrane protein folding are now emerging at an ever increasing pace. Using the panoply of methods developed for studies of the folding of water-soluble proteins. This review summarises current knowledge of the mechanisms of outer membrane protein biogenesis and folding into lipid bilayers in vivo and in vitro and discusses the experimental techniques utilised to gain this information. The emerging knowledge is beginning to allow comparisons to be made between the folding of membrane proteins with current understanding of the mechanisms of folding of water-soluble proteins

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Controlling the Depolymerization of Paraformaldehyde with Pd-Phosphine Complexes

    No full text
    Paraformaldehyde is an easy-to-handle chemical for the in situ generation of formaldehyde and is, therefore, often used in chemistry, structural biology, or medicine. We have investigated the depolymerization process of paraformaldehyde at different temperatures for the application as C1 surrogate in "CO-free" carbonylation reactions using in situ Raman spectroscopy. Rather surprisingly, it was found that small amounts of commonly applied carbonylation catalysts slow down the depolymerization process significantly. By applying 1 H, 17 O, and 31 P NMR spectroscopy coupled with DFT calculations the inhibition process could be assigned to an electron-withdrawing coordination behavior of the Pd complex at the chain end of the paraformaldehyde chain. This inhibition process can be controlled by the utilized phosphine ligand

    Tailoring Phosphine Ligands for Improved C-H Activation: Insights from Δ-Machine Learning

    No full text
    Transition metal complexes have played crucial roles in various homogeneous catalytic processes due to their exceptional versatility. This adaptability stems not only from the central metal ions but also from the vast array of choices of the ligand spheres, which form an enormously large chemical space. For example, Rh complexes, with a well-designed ligand sphere, are known to be efficient in catalyzing the C-H activation process in alkanes. To investigate the structure-property relation of the Rh complex and identify the optimal ligand that minimizes the calculated reaction energy ΔE of an alkane C-H activation, we have applied a Δ-Machine Learning method trained on various features to study 1,743 pairs of reactants (Rh(PLP)(Cl)(CO)) and intermediates (Rh(PLP)(Cl)(CO)(H)(propyl)). Our findings demonstrate that the models exhibit robust predictive performance when trained on features derived from electron density (R2 = 0.816), and SOAPs (R2 = 0.819), a set of position-based descriptors. Leveraging the model trained on xTB-SOAPs that only depend on the xTB-equilibrium structures, we propose an efficient and accurate screening procedure to explore the extensive chemical space of bisphosphine ligands. By applying this screening procedure, we identify ten newly selected reactant-intermediate pairs with an average ΔE of 33.2 kJ mol-1, remarkably lower than the average ΔE of the original data set of 68.0 kJ mol-1. This underscores the efficacy of our screening procedure in pinpointing structures with significantly lower energy levels

    Synthesis and Spectroscopic Characterization of Furan-2-Carbaldehyde-<i>d</i>

    No full text
    Here, we present a protocol for the one-step synthesis of the title compound in quantitative yield using adapted Vilsmeier conditions. The product was characterized by 1H-,2H-,13C-NMR-, as well as IR and Raman spectroscopy. Spectral data are given in detail
    corecore