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Abstract

In the package corr2D two-dimensional correlation analysis is implemented in R. This
paper describes how two-dimensional correlation analysis is done in the package and how
the mathematical equations are translated into R code. The paper features a simple tu-
torial with executable code for beginners, insight into the calculations done before the
correlation analysis, a detailed look at the parallelization of the fast Fourier transforma-
tion based correlation analysis and a speed test of the calculation. The package corr2D
offers the possibility to preprocess, correlate and postprocess spectroscopic data using
exclusively the R language. Thus, corr2D is a welcome addition to the toolbox of spectro-
scopists and makes two-dimensional correlation analysis more accessible and transparent.
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1. Introduction to 2D correlation spectroscopy

Since their invention scientists used infrared (IR), Raman or nuclear magnetic resonance
(NMR) spectroscopy to gain information on atoms and molecules. The usual way to extract
information from IR, Raman or NMR spectra is to assign observed spectral signals to molec-
ular structures and thus deducing molecular properties. When analyzing a series of spectra
it is sometimes difficult to identify spectral changes of two overlapping signals making it im-
possible to assign these signals to specific molecular structures. To overcome these problems
two-dimensional (2D) correlation analysis was invented (Noda 1989, 1993).
The basic idea of a correlation analysis is to analyze how similar (or dissimilar) two spectral
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signals change. The correlation analysis describes in a quantitative manner how similar
these two signals behave. 2D correlation spectroscopy is a pure mathematical processing of
signals. 2D NMR or 2D IR experiments which are based on physical correlation processes
during the respective spectroscopic measurements are related to 2D correlation spectroscopy.
2D correlation spectroscopy correlates spectroscopic data after the measurement while 2D
NMR and 2D IR experiments generate the correlation during the data collection by special
experimental setups.
2D correlation analysis (which is another term to describe 2D correlation spectroscopy) is used
in spectroscopy to analyze spectral features more clearly and to extract additional information,
which may be obscured in classical one-dimensional (1D) plots of spectra. To achieve this
goal 2D correlation spectroscopy correlates a series of spectra collected under the influence
of an external perturbation using the correlation integral. Isao Noda applied the correlation
integral to a series of IR spectra of polymers collected under the influence of a sinusoidal
tensile strain in 1986 (Noda 1986) and later generalized the approach in 1989 and 1993 (Noda
1989, 1993).
Today 2D correlation analysis is used in spectroscopy to analyze dynamic systems under a
specific perturbation. In this context IR, Raman, NMR and UV/Vis spectroscopy as well as
mass spectrometry have been used to study polymers, reaction solutions and pharmaceuticals
under the influence of temperature, time and electro-magnetic radiation. For good reviews
on spectroscopic methods, samples and perturbations used in 2D correlation spectroscopy the
reader is referred to Noda (2014a,b) and Park, Noda, and Jung (2016).
Although 2D correlation spectroscopy is used by an ever growing community, there has – to
the best of our knowledge – so far been no publicly available implementation of 2D correlation
spectroscopy in R (R Core Team 2019). Furthermore there is only one standalone software
available to do 2D correlation spectroscopy. It is called 2DShige, can be downloaded for free
and was developed by Shigeaki Morita (Morita 2005). Unfortunately, 2DShige is a standalone
program and thus it is difficult to use it in combination with other software, which may
be used to preprocess the spectroscopic data accordingly. It is also not an open source
software and thus lacks transparency. As an alternative to 2DShige home-written MATLAB
(The MathWorks Inc. 2016) scripts are often used to carry out 2D correlation analysis (López-
Díez, Winder, Ashton, Currie, and Goodacre 2005; Barton, de Haseth, and Himmelsbach
2006; Spegazzini, Siesler, and Ozaki 2012) (see also MATLAB contribution MIDAS 2010 by
Ferenc 2011). These MATLAB scripts allow the user to preprocess and correlate the data
within one program, but also lack transparency and comprehensibility. The spectroscopy
and analysis software OPUS from Bruker Corporation (2016) also has an implemented 2D
correlation spectroscopy algorithm. Unfortunately, OPUS is a commercial software and lacks
some freedom as well as transparency, which other statistical software like R or MATLAB offer.
Thus, OPUS is very rarely used to perform 2D correlation spectroscopy. The widespread
analysis software Origin by OriginLab (2019) on the other hand offers the possibility to
conduct homo as well as hetero 2D correlation analysis since 2018 via its twoDCorrSpec.opx
extension. Unfortunately the use of the extension is (up to 2019) not free and only available
for OriginPro users.
In this paper we present our R package corr2D (Geitner, Fritzsch, Bocklitz, and Popp 2019),
which implements 2D correlation spectroscopy in R and is available from the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/package=corr2D. Package
corr2D combines transparency, comprehensibility and the convenience to process and analyze
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2D correlation spectra within one open source program. We already published some results
(Geitner et al. 2015, 2016) utilizing the calculation and plotting properties of corr2D. For
the calculation of the complex correlation matrix a parallelized fast Fourier transformation
(FFT) approach is used. To illustrate the use of corr2D the package also features a set of
preprocessed temperature-dependent experimental Raman spectra (Geitner et al. 2015) and
a function to generate artificial data. We hope to enrich both the R community as well as the
2D correlation community with our package.
The paper is divided into three main sections. Section 2 deals with the mathematical back-
ground and the theoretical description of 2D correlation spectroscopy. The comprehensive
mathematical description of 2D correlation spectroscopy is important because the package
corr2D translates the 2D correlation theory into executable R code. For newcomers to the
field of 2D correlation analysis we suggest reading Noda, Dowrey, Marcoli, Story, and Ozaki
(2000) as it features a simplified introduction to the formal mathematical procedure and three
application examples. Section 3 is meant as a tutorial for beginners. It describes the struc-
ture of the input data and how the resulting object containing the 2D correlation spectra
can be visualized. In addition the arguments of the plotting functions plot_corr2d() and
plot_corr2din3d() are presented. To round out the tutorial the section also gives a short
introduction to the interpretation of 2D correlation spectra. Section 4 further dives into the
technical details of corr2D. The section focuses on how the mathematical equations described
in Section 2 are translated into R code, how special features of 2D correlation spectroscopy
are implemented into corr2d(), how the 2D correlation analysis was parallelized and how
fast the resulting R code is. The final section also explains the R code behind the plotting
functions plot_corr2d() and plot_corr2din3d().

2. Theoretical description of 2D correlation spectroscopy

The foundation of 2D correlation spectroscopy are the general auto- and cross-correlation
integrals seen in Equations 1 and 2. The result of a general correlation analysis is the corre-
lation coefficient C which describes how similar two signals f(u) and g(u) are depending on
a lag τ between them. f∗(u) denotes the complex conjugate of f(u).

Cauto(τ) =
∞∫
−∞

f∗(u) · f(u+ τ)du (1)

Ccross(τ) =
∞∫
−∞

f∗(u) · g(u+ τ)du (2)

To use the general correlation integral on spectroscopic data the integral needs to be specified.
This is accomplished by replacing the terms f(u) and g(u) in Equation 2 by the dynamic
variations of two signals y1(ν1, t) and y2(ν2, t), e.g. spectra. Both spectra depend on their
own spectral variables ν1 and ν2 as well as on an external perturbation variable t. The spectra
are observed within a perturbation interval ranging from Tmin to Tmax. This interval is used
together with the reference spectrum y(ν) to formally define the dynamic spectrum ỹ(ν, t) as
seen in Equation 3. The dynamic spectra represent the dynamic changes observed within the
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signals y1(ν1, t) and y2(ν2, t) induced by the perturbation t.

ỹ(ν, t) =
{
y(ν, t)− y(ν) for Tmin ≤ t ≤ Tmax

0 otherwise
(3)

The reference spectrum y(ν) can be chosen arbitrarily. Often the perturbation mean spectrum
is used as the reference spectrum (see Equation 4). Other reference spectra could be spectra
taken before or after the collection of the perturbation dependent spectra series.

y(ν) = 1
Tmax − Tmin

Tmax∫
Tmin

y(ν, t)dt (4)

There are in principle two ways to calculate 2D correlation spectra: The first approach is
based on the Fourier transformation (FT; Noda 1993), while the second one uses the Hilbert
transformation (HT; Noda et al. 2000). The results of both approaches are identical.
Following the FT approach the dynamic spectra need to be Fourier transformed to separate
them into component waves as stated in Noda (1990) and as can be seen in Equation 5. The
FTs of the dynamic spectra can then be used to obtain a complex cross correlation function
(Equation 6). The real and imaginary part of the complex cross-correlation function are
termed synchronous and asynchronous 2D correlation spectra Φ(ν1, ν2) and Ψ(ν1, ν2).

Ỹ (ν, ω) = F(ỹ(ν, t)) =
∞∫
−∞

ỹ(ν, t) · e−iωtdt (5)

Φ(ν1, ν2) + iΨ(ν1, ν2) = 1
2π(Tmax − Tmin)

∞∫
−∞

Ỹ (ν1, ω) · Ỹ ∗(ν2, ω)dω (6)

Figure 1 illustrates how two signals y1(t) and y2(t), which depend on the same perturbation
t, can be correlated with each other. Both signals react to the external perturbation. This
could be two specific wavenumber positions in a Raman spectrum reacting to a changing
temperature. If both signals react in an identical way to the perturbation (Case (a) in
Figure 1) the resulting complex correlation value has a non-zero real part while the imaginary
part is zero. According to Equation 6 the real and imaginary part of the complex correlation
value are called synchronous and asynchronous 2D correlation intensities Φ and Ψ. If both
signals react exactly with a phase difference of π/2 to the perturbation (Case (b) in Figure 1)
then the complex correlation value only consists of an imaginary part. This means that
the two signals only show an asynchronous correlation behavior. The case that is most often
encountered when analyzing real-world data is that the complex correlation coefficient is made
up from both real and imaginary parts and that the two correlated signals show synchronous
as well as asynchronous correlation behavior (Case (c) in Figure 1). During the process of
a complete 2D correlation analysis not only two but all combinations of spectral signals are
correlated with each other. To make the results accessible to humans the real and imaginary
parts of the calculated complex correlation coefficients are presented as synchronous and
asynchronous 2D correlation spectra.
When analyzing m discrete data values the FT has to change to the discrete Fourier transfor-
mation (DFT). Following this change Equations 5 and 6 transform into Equations 7 and 8.
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Figure 1: The figure illustrates three examples of a correlation analysis of two signals using
Equations 7 and 8. The signals y1 and y2 react to a perturbation t. Case (a) (red; top left
panel) shows a pure synchronous behavior, while case (b) (blue; top right panel) illustrates
the pure asynchronous behavior. Case (c) (green; bottom left panel) showcases the ordi-
nary correlation behavior where the complex correlation value (bottom right panel) shows
synchronous and asynchronous contributions. For details see the text.

A fast implementation of the DFT is the fast Fourier transformation (FFT), which is often
used to implement the DFT within computer algorithms. When using Equation 8 for the
calculation of 2D correlation spectra of discrete data an important condition to be fulfilled is
the even spacing of the discrete perturbation values T along the perturbation axis t. Other-
wise the unevenly sampled data has to be interpolated to form evenly sampled data or the
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correlation function needs to be modified (Noda 2003).

Ỹ (ν, ω) =
m∑
j=1

ỹ(ν, tj) · e−i
2π·ω
m

(j−1) for ω = 0, 1, . . . ,m− 1 (7)

Φ(ν1, ν2) + iΨ(ν1, ν2) = 1
π(m− 1)

m−1∑
ω=0

Ỹ (ν1, ω) · Ỹ ∗(ν2, ω) (8)

If the input data is real (a condition that is often met when dealing with real world data)
the DFT features Hermitian symmetry as seen in Equation 9, which can be used to further
simplify the calculation process.

Ỹ (ν, ω) = Ỹ ∗(ν,m− ω) for ω = 1, 2, . . . ,m− 1 (9)

In summary the calculation of 2D correlation spectra following the FT approach consists of
three main steps:

1. Calculation of the dynamic spectra ỹ(ν, t) from the preprocessed spectra y(ν, t) and a
chosen reference spectrum y(ν).

2. FT of the dynamic spectra ỹ(ν, t) to receive Ỹ (ν, ω).

3. Correlation of the Fourier transformed dynamic spectra Ỹ (ν, ω) for every spectral value
pair using the correlation integral to calculate the synchronous and asynchronous cor-
relation spectra Φ(ν1, ν2) and Ψ(ν1, ν2).

Another approach to calculate 2D correlation spectra is based on the HT (Noda et al. 2000).
The HT approach splits the calculation of the synchronous and asynchronous 2D correlation
spectra. The synchronous 2D correlation spectrum Φ(ν1, ν2) can be directly calculated from
the dynamic spectra (see Equation 10). For the calculation of the asynchronous 2D correlation
spectrum Ψ(ν1, ν2) the HT z̃(ν2, t) of one of the dynamic spectra is needed (see Equations 11
and 12). The HT is defined using the Cauchy principle value.

Φ(ν1, ν2) = 1
Tmax − Tmin

Tmax∫
Tmin

ỹ(ν1, t) · ỹ(ν2, t)dt (10)

z̃(ν2, t) = H(ỹ(ν2, t)) = 1
π

PV

∞∫
−∞

ỹ(ν2, t
′)

t′ − t
dt (11)

Ψ(ν1, ν2) = 1
Tmax − Tmin

Tmax∫
Tmin

ỹ(ν1, t) · z̃(ν2, t)dt (12)

When dealing with m discrete data values Equations 10–12 can be transformed to their
respective discrete forms as seen in Equations 13–16. The discrete HT can be done using the
so called Hilbert-Noda matrix Njk. The Hilbert-Noda matrix simplifies the discrete HT to a
matrix vector multiplication. As discussed for the FT approach it is also important for the



Journal of Statistical Software 7

HT approach that the discrete data is equidistant (Noda 2003).

Φ(ν1, ν2) = 1
m− 1

m∑
j=1

ỹ(ν1, tj) · ỹ(ν2, tj) (13)

z̃(ν2, tj) =
m∑
k=1

Njk · ỹ(ν2, tk) (14)

Njk =

0 if j = k
1

π(k−j) otherwise
(15)

Ψ(ν1, ν2) = 1
m− 1

m∑
j=1

ỹ(ν1, tj) · z̃(ν2, tj) (16)

In summary the calculation of 2D correlation spectra following the HT approach consists of
four main steps:

1. Calculation of the dynamic spectra ỹ(ν, t) from the preprocessed spectra y(ν, t) and the
reference spectrum y(ν).

2. Calculation of the synchronous 2D correlation spectrum Φ(ν1, ν2) by multiplying ỹ(ν1, t)
and ỹ(ν2, t).

3. HT of the dynamic spectra ỹ(ν2, t) to get z̃(ν2, t).

4. Calculation of the asynchronous 2D correlation spectrum Ψ(ν1, ν2) by multiplying ỹ(ν1, t)
and z̃(ν2, t).

As stated above the result of the FT and HT approach are identical. Thus the 2D correlation
spectra display the same information independent of how they were calculated. The syn-
chronous 2D correlation spectrum Φ(ν1, ν2) shows which spectral features change in-phase
while the asynchronous 2D correlation spectrum Ψ(ν1, ν2) shows which spectral features
change out-of-phase. If a spectral dataset is correlated with itself (an autocorrelation in
the general terminology) the resulting 2D spectra are called homo-correlation spectra. If two
different spectral datasets are correlated with each other (a cross-correlation in the general
terminology) the resulting 2D spectra are called hetero-correlation spectra.
In addition to the basic 2D correlation spectroscopy described above, modifications to the
original technique have been developed. One of these modifications is the application of
scaling techniques to 2D correlation spectra. The goal of scaling 2D correlation spectra is
to enhance correlation signals with low intensity when compared to correlation signals with
high intensity. High intensity signals sometimes dominate 2D correlation spectra and thus
hamper the identification of smaller signals. The approach to solve this problem is described
in Noda (2008). The basic idea is to scale the synchronous and asynchronous correlation
spectra Φ(ν1, ν2) and Ψ(ν1, ν2) using the standard deviation σν , which is calculated from the
original spectral dataset y(ν) and the reference spectrum y(ν) as seen in Equation 17. Strictly
this scaling is only defined when using the mean-spectrum (see Equation 4) as reference
spectrum, but the scaling procedure can also be applied when using other reference spectra.
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Care should be taken when interpreting scaled 2D correlation spectra which are not scaled
using the perturbation mean-spectrum.

σνi =

√√√√ 1
m− 1

m∑
j=1

(y(νi, tj)− y(ν))2 (17)

For every spectral value νi (for i = 1, 2, . . . , n) there is a standard deviation σνi . To scale the
correlation intensity at the position (ν1, ν2) the correlation intensity at this position Φ(ν1, ν2)
(or Ψ(ν1, ν2)) is divided by the product of the two standard deviations σν1 and σν2 sometimes
referred to as total joint variance (Noda 2004). This conventional unit-variance scaling is
called Pearson scaling (see Equations 18 and 19). Unfortunately, Pearson scaling strongly
increases the influence of noise on 2D correlation spectra. To counteract this effect Noda
suggested using Pareto scaling where the data is scaled by the square root of the standard
deviations. The generalized approach – as seen in Equations 20 and 21 – is to introduce
an exponent α which describes how the total joint variance is used to scale the correlation
intensities.

Φ(ν1, ν2)Pearson = Φ(ν1, ν2)
(σν1 · σν2)−1 (18)

Ψ(ν1, ν2)Pearson = Ψ(ν1, ν2)
(σν1 · σν2)−1 (19)

Φ(ν1, ν2)(Scaled) = Φ(ν1, ν2)
(σν1 · σν2)−α (20)

Ψ(ν1, ν2)(Scaled) = Ψ(ν1, ν2)
(σν1 · σν2)−α (21)

For more information on the theory of 2D correlation spectroscopy, the calculations, scaling
techniques and the influence of noise the reader is referred to the literature (Noda 1990, 2006,
2016a; Šašić, Muszynski, and Ozaki 2001; Yu, Liu, and Noda 2003; Noda 2008). For tech-
niques derived from the basic 2D correlation spectroscopy like sample-sample 2D correlation
spectroscopy, moving window 2D correlation spectroscopy, multiple-perturbation 2D corre-
lation spectroscopy, double 2D correlation spectroscopy, 2D codistribution spectroscopy and
quadrature 2D correlation spectroscopy the reader is also referred to the literature (Šašić,
Muszynski, and Ozaki 2000a,b; Thomas and Richardson 2000; Shinzawa et al. 2009; Noda
2010, 2014a, 2016b,c).

3. corr2D tutorial and interpretation of 2D correlation spectra
The package corr2D contains a calculation function corr2d(), two plotting functions
plot_corr2d() and plot_corr2din3d() as well as two S3 methods summary() and plot()
for the resulting 2D correlation object.
To get started the user just has to supply an [m×n] matrix containing the data to corr2d().
The input matrix needs to contain the data as follows: m perturbation values T by rows
and n spectral values ν by columns. The column names of the input matrix should contain
the spectral value names. Alternatively, the spectral value names can be specified at the
argument Wave1. The perturbation values can be included as row names. The FuranMale
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dataset from corr2D can be viewed as an example. It contains temperature-dependent Raman
spectra, therefore the perturbation variable t is the temperature and the spectral variable ν
is the relative wavenumber.

R> library("corr2D")
R> data("FuranMale", package = "corr2D")
R> FuranMale[, 1:5]

1550.26392 1550.74602 1551.22812 1551.71023 1552.19233
110 0.0058962811 5.506783e-03 0.0051347609 0.0047584418 0.004295668
120 0.0043970716 4.860985e-03 0.0052363316 0.0055872210 0.005806852
130 0.0055330645 4.916008e-03 0.0045517037 0.0043091089 0.004450099
140 -0.0008350893 -4.653592e-04 0.0003397819 0.0014053808 0.002903903
150 -0.0005203668 3.312193e-05 0.0003998590 0.0008810001 0.001332789
160 0.0060360763 6.776913e-03 0.0073772994 0.0076989039 0.007883910

R> twod <- corr2d(FuranMale)

HOMO-Correlation: 2 cores used for calculation
10:39:26 - using mean values as reference
10:39:26 - Fast Fourier Transformation and multiplication
to obtain a 145 x 145 correlation matrix

10:39:26 - Done

corr2d() identifies that only one input matrix was given. Thus, corr2d() correlates the
input data with itself which results in homo-correlation spectra. If a second input matrix
would be given to corr2d() (at argument Mat2) the function would automatically calculate
the hetero-correlation spectra from the two input matrices. Additionally the function also
detects that no reference spectrum (at argument Ref1) was specified and thus builds the
mean spectrum, which is then used as reference spectrum. The resulting correlation matrix
has the dimensions [n×n], therefore the FuranMale matrix results in a [145 × 145] correlation
matrix. The correlation function corr2d() will be discussed in detail in Section 4.2.
The correlation spectra can be plotted using the plot() command, which in turn calls
plot_corr2d() via S3 method dispatch. The real part of the complex correlation spectrum
is called synchronous correlation spectrum , while the imaginary part is called asynchronous
correlation spectrum (see Figure 2). By default plot_corr2d() displays the synchronous
spectrum.

R> plot_corr2d(twod)
R> plot(twod, Im(twod$FT))

The plot function plot_corr2d() offers a lot of features which can be used to alter the
appearance of the 2D correlation plot. With the arguments specx and specy the data plotted
at the top and on the left of the spectrum can be controlled. xlim, ylim, zlim, axes, xlab
and ylab are inspired by the normal plot() (or better image()) function as they allow the
user to control the displayed region as well as the x- and y-axis and their labels. By default
plot_corr2d() uses the contour() function from package graphics to produce a contour
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Figure 2: Synchronous (top) and asynchronous (bottom) 2D homo-correlation spectra of the
dataset FuranMale. The reference spectrum is the mean spectrum.
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plot. This can be changed via the Contour argument to produce an image (once again using
the graphics package) representing the correlation spectrum. The number of equally spaced
contour levels (or image layers) plotted can be adjusted with N and the Cutout argument.
The Cutout argument can be used to define a number range which will not be plotted. This
argument suppresses the plotting of smaller signals and allows to make the resulting plot
clearer for the reader, but can also be used to remove unwanted signals and obscure results.
Thus, it should always be used with care to simplify the plots without omitting important
information. Finally the argument Legend controls the color legend in the top right corner.
Usually the absolute values of correlation spectra are not relevant for the 2D correlation plot.
Therefore, the legend can usually be omitted, because the graphical interpretation does not
depend on it. For an example with most of the arguments in action see the following code
snippet.

R> plot(twod, Re(twod$FT), xlim = c(1560, 1620), ylim = c(1560, 1620),
+ xlab = expression(paste("relative Wavenumber" / cm^-1)),
+ ylab = expression(paste("relative Wavenumber" / cm^-1)),
+ Contour = FALSE, N = 32, Cutout = c(-0.8 * 10^-4, 1.3 * 10^-4),
+ Legend = FALSE)

Besides plot_corr2d() corr2D features another plotting function: plot_corr2din3d().
This function can be used to draw a colored 3D surface representation of 2D correlation spec-
tra. To achieve this plot_corr2din3d() makes use of drape.plot() and drape.color()
from package fields (Nychka, Furrer, Paige, and Sain 2019). These two functions calculate the
color values and graphical positions form the input 2D correlation data and hand these values
over to persp() which then does the plotting of the 3D surface using the perspective angles
theta and phi. To add information to the plot plot_corr2din3d() allows the user to add
custom spectra (specx and specy) to the x- and y-axis of the persp() plot. These spectra
can be scaled using the scalex and scaley arguments from plot_corr2din3d(). The sign of
the scaling factor defines if the spectra are plotted inside (positive sign) or outside (negative
sign) the persp() plot. In addition a 2D projection of the 3D surface can be added to the
bottom of the plot. This is also done using drape.plot() and together with the x- and y-axis
spectra the projection recalls the look of a flat 2D correlation plot. To reduce the compu-
tational demand of large 2D correlation matrices plot_corr2din3d() features the argument
reduce which can be used to reduce the number of points used for drawing the 3D surface.
Thus, the argument reduce allows to calculate a first draft of the 3D surface to adjust the
plotting parameters without a high computational demand. Overall, plot_corr2din3d() is
a useful addition to corr2D and allows to illustrate 2D correlation spectra with impressive
colored 3D surface plots. Figure 3 shows a 3D surface plot of the synchronous 2D correlation
spectrum from the FuranMale dataset.

R> plot_corr2din3d(Mat = Re(twod$FT), specx = twod$Ref1, specy = twod$Ref1,
+ reduce = 2, scalex = -150, scaley = -130, zlim = c(-0.7, 1) * 10^-3,
+ projection = TRUE, border = NULL, theta = 25, phi = 15,
+ add.legend = FALSE, Col = colorspace::diverge_hcl(129, h = c(240, 0),
+ c = 100, l = c(20, 100), power = 0.3))

The interpretation of 2D correlation spectra is based on the results of the correlation integral.
Following the definition of the synchronous and asynchronous correlation spectra (see Figure 1
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Figure 3: 3D surface plot of the synchronous 2D homo-correlation spectrum of the dataset
FuranMale showcasing plot_corr2din3d(). The plot features two custom spectra on the x-
and y-axes and a 2D projection of the 3D surface.

as well as Equations 6, 10 and 12), a set of rules can be derived, which can be used to
understand the colorful 2D correlation spectra. These interpretation rules are called “Noda
rules”.
There are two types of signals in 2D correlation spectra: auto peaks and cross peaks. Auto
peaks are located at the diagonal of 2D homo-correlation, therefore both spectral variables
ν1 and ν2 have the same value at auto peaks (Case (a) in Figure 1). Auto peaks are always
non-negative in the synchronous correlation spectrum and are always 0 in the asynchronous
correlation spectrum (compare Case (a) in the bottom right panel in Figure 1). They indicate
how strong the spectral intensity changes at a given spectral position ν1. A strong synchronous
auto peak signals characteristic high changes at the associated spectral position.
Often the information gathered from auto peaks is easy to interpret, but not too helpful when
compared to the information gained from cross peaks. Cross peaks are not located at the
diagonal and show the correlation between changes at two different spectral values ν1 and ν2
(Case (b) and Case (c) in Figure 1). Following Noda (1990, 2006) there are five Noda rules,
which can be used to interpret synchronous and asynchronous 2D correlation cross peaks:

1. If the sign of a cross peak at a spectral coordinate pair (ν1, ν2) of a synchronous 2D
correlation spectrum is positive, i.e., Φ(ν1, ν2) > 0, the spectral intensities measured at
ν1 and ν2 are changing in the same direction, i.e., both intensities are either increasing
or decreasing simultaneously.
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2. On the other hand, if the sign of a synchronous cross peak is negative, i.e., Φ(ν1, ν2) < 0,
the spectral intensities measured at ν1 and ν2 are changing in the different directions,
i.e., one is increasing while the other is decreasing.

3. If the sign of a cross peak at a spectral coordinate pair (ν1, ν2) of an asynchronous 2D
correlation spectrum is positive, i.e., Ψ(ν1, ν2) > 0, the spectral intensity measured at
ν1 varies before that measured at ν2 with respect to the perturbation.

4. If the sign of an asynchronous cross peak is negative, i.e., Ψ(ν1, ν2) < 0, the spectral
intensity measured at ν1 varies after that measured at ν2 with respect to the perturba-
tion.

5. However, if the sign of a synchronous cross peak located at the same spectral coordinate
(ν1, ν2) is negative, i.e., Φ(ν1, ν2) < 0, the above two rules are reversed.

As a starting example we have a look at the synchronous 2D correlation spectrum of the
FuranMale dataset (Figure 2): We see three (positive) auto peaks at (1575 cm−1, 1575 cm−1),
(1585 cm−1, 1585 cm−1) and (1600 cm−1, 1600 cm−1) as well as two negative cross peaks at
(1575 cm−1, 1585 cm−1) and (1575 cm−1, 1600 cm−1) as well as one positive cross peak at
(1585 cm−1, 1600 cm−1). The other three cross peaks are redundant, because a synchronous
2D homo-correlation spectrum is always symmetric with respect to the diagonal. The auto
peaks indicate that all three Raman bands are changing during the heating. The positive
cross peak at (1585 cm−1, 1600 cm−1) tells us that the bands at 1585 cm−1 and 1600 cm−1

are changing in the same direction (Noda rule 1), while the two negative cross peaks at (1575
cm−1, 1585 cm−1) and (1575 cm−1, 1600 cm−1) unveil that the band at 1575 cm−1 is changing
in a different direction when compared to the band at 1585 cm−1 and 1600 cm−1 (Noda rule
2). If this information about the three bands is combined with the information from the one-
dimensional Raman spectrum that the band at 1585 cm−1 is increasing in intensity during
the heating, it becomes clear that the band at 1600 cm−1 is also increasing in intensity while
the band at 1575 cm−1 is falling in intensity during the heating.
For further conclusions from the Raman spectra the reader is referred to Geitner et al. (2015).
Further examples and extended discussion on the interpretation of 2D correlation spectra can
be found in Noda (1993); Czarnecki (1998); Noda (2006, 2012, 2014a).

4. Technical aspects

4.1. Software versions and hardware setup

R as a software language and its software packages are being actively developed. Thus,
this manuscript can only be a snapshot regarding the ongoing development process. For
information on the latest version of corr2D the user is referred to the online documentation
of corr2D (Geitner et al. 2019).
The current R version is 3.4.1, the version of the R core packages parallel, stats, graphics and
grDevices are also 3.4.1 (R Core Team 2019), the version of doParallel is 1.0.10 (Microsoft
Corporation and Weston 2018), the version of foreach is 1.4.4 (Microsoft and Weston 2017),
the version of fields is 9.0 (Nychka et al. 2019), the version of mmand is 1.5.1 (Clayden 2019),
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the version of rgl is 0.98.1 (Adler and Murdoch 2019) and the version of colorspace is 1.3.2
(Zeileis et al. 2019). The version of corr2D discussed here is 0.1.12.
The calculation speed test of corr2d() depending on the input matrix dimensions and the
number of processor cores used was done using the function microbenchmark() from package
microbenchmark (Mersmann 2018) with 10 calculation cycles. The test system was a 64-bit
Windows 7 (SP1) setup with 8 GB of random access memory (RAM) and a quadcore Intel
Core i5-2450M processor.
The profiling of the two functions corr2d() and plot_corr2d() from corr2D was done using
a 64-bit Windows 7 (SP1) system with Intel Core2 Duo CPU E7400 @ 2.80 GHz, 4 GB of RAM
as well as an Intel G35 Express Chipset as graphical processing unit and the package profr
(Wickham 2018). The 2D correlation software 2DShige was tested with the same system.

4.2. corr2d(): From equations to R code

In the following two sections we will have a closer look at the correlation function corr2d(),
how it handles the input perturbation variable, how it generates the dynamic spectra, how it
applies scaling techniques to 2D correlation spectroscopy, how the parallel correlation process
works and how the R script compares to other 2D correlation software in terms of speed and
user-friendliness.
As described in the introduction it is important that the discrete perturbation values T are
equidistant. This requirement is often difficult to fulfill when working with real world data,
especially for big datasets with a lot of perturbation values or perturbation values which are
hard to adjust like the pH value. To overcome this problem there are three approaches:

1. Ignore the requirement for equidistant perturbation values and use the data as it is.

2. Use modified correlation equations as described in Noda (2003) to account for the uneven
sampling of the perturbation variable.

3. Interpolate the perturbation values and the associated spectral data to get an equidis-
tant distribution of the perturbation values.

The first approach is the usual go-to solution, because it takes no complex interpolation
and yields reasonable results if the perturbation value distribution is nearly equidistant. The
approach fails if the perturbation values are distributed very unevenly over a large observation
window. In this case it becomes necessary to interpolate the perturbation values to get an
equidistant distribution to use the correlation equations for evenly sampled perturbation
values (Equations 6, 10 and 12).
For the interpolation corr2d() can use a wide variety of interpolation algorithms, which can
be specified at the Int argument. In a simple scenario this could be a linear function mod-
eled by approxfun(). The default interpolation function for corr2d() is the cubic Hermite
function splinefun() from package stats. The interpolation process consists of three steps:
an interpolation to get m (specified by argument N) equidistant perturbation values, a value
wise interpolation of the spectral dataset using the interpolation function given by Int and
the calculation of the new spectral dataset using the interpolated spectral dataset and the
interpolated perturbation values. The following lines of code show the interpolation process.
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R> TIME <- seq(min(Time), max(Time), length.out = N)
R> tmp <- apply(Mat1, 2, function(y) Int(x = Time, y = y))
R> Mat1 <- sapply(tmp, function(x) x(TIME))
R> Time <- TIME

The old minimum and maximum perturbation values from Time are used to generate the new
perturbation values TIME. The spectral dataset in Mat1 is interpolated column wise (which is
equal to spectral value wise) using the old perturbation values from Time and interpolation
specified by Int to get a list of functions tmp describing the behavior of the spectral intensity
at every spectral position along the perturbation axis. This function is then used together
with the new perturbation values TIME to calculate the interpolated spectral dataset. In
addition the new equidistant perturbation values are saved.
This approach to get an evenly sampled perturbation variable is very flexible and allows the
use of a wide variety of interpolation functions. This flexibility can be used to get good results
from an otherwise sub-optimal dataset.
The next step on the way to calculate 2D correlation spectra is the calculation of the dynamic
spectra. The dynamic spectra are built from the original dataset by subtracting a reference
spectrum (see Equation 4). Thus, the dynamic spectra show the changes with respect to the
chosen reference spectrum.
The reference spectrum can be any spectrum as long as it has the same number of spectral
values as the input data. When doing a 2D correlation analysis on a new dataset usually the
perturbation mean spectrum is chosen as the reference spectrum. Other reference spectra
could be the starting or the end spectrum as well as an external spectrum which is not
part of the original dataset. The choice of the reference spectrum depends on the analytical
problem and what spectral changes should be highlighted. The correlation function corr2d()
takes one vector containing the reference spectrum at argument Ref1 (and a second reference
spectrum at Ref2 when doing a hetero-correlation analysis) and builds the dynamic spectra
through subtracting via the sweep() function following Equation 3. If no reference spectrum
is specified the perturbation mean spectrum is calculated from the input matrix Mat1 (or
Mat2) according to Equation 4 and subtracted instead. In this case the dynamic spectra
become the mean-centered spectra.
R> if (is.null(Ref1)) {
+ Ref1 <- colMeans(Mat1)
+ }
R> Mat1 <- sweep(Mat1, 2, Ref1, "-")
R> if (Het == FALSE) {
+ Mat2 <- Mat1
+ Ref2 <- Ref1
+ } else {
+ if (is.null(Ref2)) {
+ Ref2 <- colMeans(Mat2)
+ }
+ Mat2 <- sweep(Mat2, 2, Ref2, "-")
+ }

The final step before determining the actual correlation is applying scaling techniques. Unfor-
tunately, Equations 20 and 21 discussed in Section 2 are not ideal to be directly incorporated
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into R code. The number of calculations necessary to scale a synchronous (or asynchronous)
homo-correlation spectrum of dimensions [n×n] is n2, where n is the number of spectral val-
ues. Because homo-correlation spectra are symmetric regarding the diagonal the number of
calculations necessary reduces to (n2 + n)/2. Therefore, the time needed to scale a complex
homo-correlation spectrum consisting of one synchronous and one asynchronous spectrum
scales with n2 + n.

R> if (scaling > 0) {
+ sd1 <- apply(Mat1, 1, sd)
+ sd2 <- apply(Mat2, 1, sd)
+ Mat1 <- Mat1 / (sd1^scaling)
+ Mat2 <- Mat2 / (sd2^scaling)
+ }

To circumvent the quadratic time scaling corr2d() scales the dynamic spectra before doing
the correlation. The scaling of mean-centered dynamic spectra by the standard deviation is
called auto-scaling. The number of calculations necessary to get auto-scaled dynamic spectra
is m · n, where m is the number of spectra in the dataset and n is the number of spectral
values within each spectrum. Thus, the time needed to auto-scale a dataset is proportional
to m · n.
When comparing the two calculation times it becomes clear that applying the scaling before
the correlation is faster than applying the scaling after the correlation as along m is smaller
than n. In other words as long as the number of spectra within the dataset is smaller than
the number of spectral values in each spectrum it is faster to apply the scaling before the
correlation. This condition is often met because the usual 2D correlation analysis features 10–
30 different perturbations values, while each spectrum consists of hundreds of spectral values,
e.g., 1024. Therefore, the function corr2d() applies the scaling before the correlation.
The function corr2d() uses the FT approach described by Equations 5 and 6 to calculate 2D
correlation spectra. To do the DFT corr2d() uses the FFT provided by the function fft()
from package stats. This type of DFT is much faster than normal DFT when the number of
perturbation values has a lot of factors. Thus, corr2d() tries to interpolate to 4, 8, 16, . . . ,
2n perturbation values when interpolating the perturbation axis.
A problem when implementing the FFT in a linear for loop is the speed of the calculations,
which drops dramatically when processing a dataset with a large number of spectral values.
Therefore, we decided to parallelize the FFT calculations using the foreach package (Kane,
Emerson, and Weston 2013). Parallel processing using the multi-core structure of modern
computers can lead to significant reduced calculation times when doing a large number of
similar operations.

R> ft1 <- foreach::foreach(i = 1:NCOL(Mat1), .combine = "cbind") %dopar% {
+ fft(Mat1[, i])[1:(NROW(Mat1) - 1) %/% 2 + 1]
+ }
R> if (Het == FALSE) {
+ ft2 <- ft1
+ } else {
+ ft2 <- foreach::foreach(i = 1:NCOL(Mat2), .combine = "cbind") %dopar% {
+ fft(Mat2[, i])[1:(NROW(Mat2) - 1) %/% 2 + 1]
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+ }
+ }

The code snippet highlights the FFT implementation in corr2d(). With the functions
foreach() and %dopar% the calculation process is split up according to the number of avail-
able cores so that the fft() calculations will be done in parallel. The result of the parallel
calculations is a matrix containing the FTs for every spectral value over the whole perturbation
range. This matrix is the discrete analogue to Ỹ (ν, ω) from Equation 5. If a homo-correlation
is done the matrix is duplicated, for a hetero-correlation the FFT is also done for the second
matrix of dynamic spectra.
corr2d() discards half of the calculated FT values. This step can be explained by the
symmetry of the FT of real input data. If a signal y gets Fourier transformed, the result is a
complex signal F(y) consisting of a real and an imaginary part. If the input signal y is real,
the real part of the FT is always even, while the imaginary part is always odd. In addition
the FT values feature Hermitian symmetry F(y)(ω) = F∗(y)(m− ω) as seen in Equation 9.
Following this symmetry condition only half the values of a FT of a real signal are needed to
fully describe the information in the corresponding FT. Thus, it is reasonable to only use one
half of the FT values when doing a correlation analysis of real data. To extract the correct
amplitudes of the Fourier frequencies, the corresponding amplitudes have to be doubled when
utilizing the Hermitian symmetry to simplify the calculation process. To account for this, the
function corr2d() uses all FT values were ω 6= 0 twice.

R> cl <- parallel::makeCluster(corenumber)
R> doParallel::registerDoParallel(cl)
R> FT <- matrix(Norm * parallel::parCapply(cl, ft1, get("%*%"), Conj(ft2)),
+ NCOL(ft1), NCOL(ft2), byrow = TRUE)

The correlation procedure follows Equation 6 and is parallelized using the function
parCapply() from package parallel. parCapply() directs the column wise matrix multi-
plication to the different cores which are registered before the calculation. The correlation is
done using the Fourier transformed dynamic spectra for every spectral value pair (ν1, ν2). In
addition the resulting correlation matrix gets normalized by factor Norm which gets specified
in the input to corr2d(). The default normalization is the factor 1/(π · (m− 1)) where m is
the number of sampled perturbation values. The real part of the complex output matrix FT is
the synchronous correlation spectrum Φ(ν1, ν2) while the imaginary part is the asynchronous
correlation spectrum Ψ(ν1, ν2) (see Equation 6).

4.3. Speed test of calculation
The parallelization speeds up the calculation process. To measure the influence of the par-
allelization and the influence of the input matrix dimensions we designed a small speed test.
The speed of corr2d() was measured using microbenchmark() from package microbench-
mark with 10 calculation cycles. The input matrix was simulated by sim2ddata() (from
corr2D) with 200, 400, 600, 1000, 4000 and 8000 spectral values n and 5, 10, 20, 100 and 500
perturbation valuesm. The simulated spectral data of the consecutive first order reaction was
also used in Noda (2014a). The calculations were done with 1, 2 or 4 cores, respectively. The
calculation and plotting time used by 2DShige was estimated 10 times using the Windows
task manager.
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n
m 200 400 600 1000 4000 8000

1
co
re

5 0.36 0.50 0.65 1.05 5.55 16.37

in
s10 0.36 0.50 0.66 1.10 5.76 18.21

(a) 20 0.36 0.50 0.67 1.11 6.17 18.61
100 0.63 0.98 0.92 1.33 9.74 33.04
500 0.48 0.82 1.23 2.57 26.53 105.23

2
co
re
s

5 0.56 0.69 0.80 1.18 5.03 15.09

in
s10 0.62 0.69 0.83 1.18 5.16 15.88

(b) 20 0.56 0.68 0.82 1.21 5.40 16.87
100 0.59 0.73 0.89 1.33 7.50 27.01
500 0.66 0.92 1.27 2.15 18.46 74.43

4
co
re
s

5 1.00 1.11 1.21 1.62 5.45 15.49

in
s10 0.99 1.09 1.22 1.59 5.55 16.11

(c) 20 0.99 1.09 1.23 1.63 5.88 17.20
100 1.02 1.13 1.31 1.73 7.82 26.81
500 1.10 1.42 1.70 2.62 18.33 72.34

ra
tio

4/
1

5 2.81 2.21 1.85 1.54 0.98 0.95

/

10 2.75 2.16 1.84 1.45 0.96 0.89
(d) 20 2.75 2.16 1.83 1.46 0.95 0.92

100 1.62 1.15 1.42 1.30 0.80 0.81
500 2.30 1.73 1.39 1.02 0.69 0.69

Table 1: Mean calculation times (in seconds) needed by corr2d() to do a 2D homo-correlation
analysis using 1 (a), 2 (b) or 4 (c) processor cores and a ratio (d) calculated from the mean
calculation times using 4 and 1 processor cores. The table includes the number of perturbation
values m by rows and the number of spectral values n by columns.

The result of the speed test can be seen in Table 1(a)–(c). As one can see from the table the
parallelization speeds up the calculation of large 2D correlation spectra while it slows down the
calculation for smaller 2D spectra. Table 1(d) illustrates this observation. This observation
can be explained by how parallel computing works: For a parallelized calculation every core
calculates only a small part of the problem. These small tasks need to be transferred to the
calculating cores and later the results of all these small calculations need to be put together
to get the result for the parallelized calculation. The time needed by this processes increases
the more the original task is split up. Thus, a parallel computation is always a trade-off
between speeding up the calculation process and increasing the amount of traffic needed to
organize the parallel computation. This trade-off can be seen at the parallel calculations
done by corr2d(): corr2d() needs more time calculating the correlation in parallel when
the input matrix is small compared to a serialized calculation with only one processor core.
For larger input matrices the effect tips and corr2d() is faster using more cores. For small
input matrices the correlation speed differences are hardly noticeable (0.8 s vs. 1.4 s for a [500
× 400] matrix) while the speed differences are much more important if the input matrices get
bigger and the calculation times get longer (26.5 s vs. 18.3 s for a [500 × 4000] matrix).
The number of computation steps necessary also depends on how the input for the correlation
integral is calculated. The number of computation steps varies for the FT and the HT
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Figure 4: Calculation time used by corr2d() to calculate a [4000 × 4000] complex correlation
spectrum from a [100 × 4000] input matrix. The colored bars show how much calculation
time is used by each single calculation step.

approach. For m discrete input spectra the FFT needs 4 ·m · log2(m) steps (using the Cooley-
Tukey algorithm; Cooley and Tukey 1965) while the HT needs m2 steps. Therefore, the HT
is faster for smaller datasets while the FFT is faster for larger datasets. Because calculation
speed matters more for larger datasets, corr2d() uses the FT approach. For details on the
comparison between the FT and the HT approach the reader is referred to Noda et al. (2000).
The speed of the calculation drops off significantly if the RAM limit dedicated to R is reached.
In this case corr2d() needs to save results outside the RAM which takes a large amount of
time when compared to saving data inside the RAM. Under Windows there is a memory limit
for the R process which might be necessary to increase using memory.limit() to overcome
this problem.

R> simdata <- sim2ddata(4000, seq(0, 10, length.out = 100))
R> library("profr")
R> prof2d <- profr(c(speedtwod <- corr2d(simdata, Time =
+ as.numeric(rownames(simdata)), scaling = 0.5), plot_corr2d(speedtwod)),
+ interval = 0.005)

To illustrate how much time is spent in each step, the correlation function corr2d() and
the plotting function plot_corr2d() were profiled using profr() from package profr. The
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Figure 5: Comparison between corr2D and 2DShige. Calculation and plotting time used to
evaluate a [4000 × 4000] complex correlation spectrum from a [100 × 4000] input matrix.
The colored bars show how much calculation time is used by each single calculation step.

results can be seen in Figure 4. Most of the calculation time used by corr2d() is needed
for the parallel matrix multiplication (5.6 s) followed by the FFT (1.1 s). The interpolation
process to get 128 perturbation values (0.3 s) and the application of scaling techniques (0.05
s) are faster. The plotting of the resulting synchronous 2D correlation spectrum also needs
time (11.4 s) because the complete spectrum has 16 MPixel.
To evaluate the script in a larger scheme we tried to compare the R package corr2D to the
software 2DShige (Morita 2005) which is available free of charge from the internet. Because
2DShige is a stand-alone program the timing of its calculations are not as precise as the
timings from the profiling of corr2d() and plot_corr2d(). The calculation and plotting
time used by 2DShige was estimated 10 times using the Windows task manager. The input
matrix was the same simulated [100 × 4000] data matrix used for the profiling.
2DShige took 77.9 s to calculate the [4000 × 4000] complex 2D correlation spectrum and plot
the synchronous 2D correlation spectrum. Unfortunately, it is not possible to give calcula-
tion times for every calculation step. Comparing the calculation times needed by 2DShige
and corr2D it becomes clear that the R package is faster when calculating a large 2D cor-
relation spectrum. Figure 5 illustrates the results. Overall, the profiling of corr2d() and
plot_corr2d() and the speed test done for corr2d() prove that it is useful to parallelize the
FFT and the matrix multiplication. Other calculation steps (interpolation, reference spec-
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trum calculation and scaling) are much faster than the FFT and the matrix multiplication
and thus do not need a parallelization. The parallel calculation approach is faster when com-
pared to a serialized approach for large input matrices. The R code also compares favorably
to the widespread 2D correlation software 2Dshige in terms of speed and transparency.

4.4. Visualizing 2D correlation spectra

The following section describes the programming and design details considered for the two
plotting functions plot_corr2d() and plot_corr2din3d(). In general the representation of
2D correlation spectra is designed with 2D NMR plots in mind. 2D NMR plots also show 3D
data with two frequency axes (the so called chemical shift δ) and contour levels to represent
cross peaks. 2D NMR spectroscopy is a common technique in chemistry labs. Thus, the
plotting function plot_corr2d() tries to mimic the appearance of 2D NMR plots to make
the data accessible for beginners in the field of 2D correlation spectroscopy.
Most of the arguments in plot_corr2d() are inspired by the arguments in plot() or image()
to allow users already experienced with R a smooth transition. The function plot_corr2d()
takes an object Obj of class ‘corr2d’ as produced by the correlation function corr2d() and
extracts the different parameters needed for depicting the 2D correlation spectra contained
in the given object.
Firstly, the function plot_corr2d() saves the prior user defined graphics parameters to re-
store them at the end. Secondly, plot_corr2d() also extracts the graphical parameters
assigned by the user under the ... argument. This procedure enables the function to later
use these parameters in different plotting functions to adjust the appearance of the entire 2D
correlation plot.

R> par_old <- par(no.readonly = TRUE)
R> on.exit(options(par(par_old)), add = TRUE)
R> getparm <- list(...)
R> graphparm <- utils::modifyList(par(), getparm)

After the extraction of the graphical parameters, the 2D plot function subsets the spectral
variable axes Obj$Wave1 (x-axis) and Obj$Wave2 (y-axis) to the window range defined by the
arguments xlim and ylim.

R> if (is.null(xlim)) {
+ Which1 <- 1:NROW(what)
+ } else {
+ Which1 <- which(xlim[1] < Obj$Wave1 & Obj$Wave1 < xlim[2])
+ }
R> if (is.null(ylim)) {
+ Which2 <- 1:NCOL(what)
+ } else {
+ Which2 <- which(ylim[1] < Obj$Wave2 & Obj$Wave2 < ylim[2])
+ }

The 2D plot function uses the contour() or image() function in a split.screen() environ-
ment (all from package graphics) to generate the 2D plot. The plot device is split into seven
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Figure 6: Schematic representation of the seven screens generated and used by plot_corr2d()
to graphically represent 2D correlation spectra. The offset OFF is used during development
to adjust the screen ratios.

screens (see Figure 6), which will be filled with two 1D spectra via a simple line plot (Screens
1 and 2), the central 2D plot (Screen 3), generated by the contour() or image() function
with x- and y-axis as well as their labels and the color legend in the top right (Screen 7). The
remaining three screens remain (up to now) empty. On exit plot_corr2d() closes all but
Screen 3, thus further plots, lines and points can be added to the central plot or data can be
read out interactively using the locator() function. The code snippet shows the creation of
the split.screen() environment. The offset OFF is used during development to adjust the
ratio between the main part (Screen 3) and the surrounding screens.
After the creation of the different screens the function plot_corr2d() switches to the different
screens and fills them with plots, labels and legends. Screens 1 and 2 are used to plot the
1D reference spectra to the top (specx) and to the left (specy) of the main part in Screen 3.
By default the reference spectra Obj$Ref1 and Obj$Ref2 are plotted, but the user can assign
any data to be plotted on the axes. As x-axis for the two plots the previously subset spectral
variable axes Obj$Wave1[Which1] and Obj$Wave2[Which2] are used to align the 1D spectra
with the central 2D plot. Thus, the reference spectra (specified at specx and specy) must
be of the same length as the spectral variable axes. The reference spectrum on the y-axis
is rotated by switching the x- and y-axes around as well as by adjusting the new x-values
accordingly. The plotting of the reference spectra can be suppressed by setting specx and/or
specy NULL. The arguments defined in par() suppress the plotting of any axes or labels,
which are not needed because they are added to the axes of the 2D correlation spectrum.
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The line width of the 1D plots can be adjusted by assigning the lwd argument.

R> if (!is.null(specy)) {
+ screen(1)
+ par(xaxt = "n", yaxt = "n", mar = c(0, 0, 0, 0), bty = "n", yaxs = "i")
+ plot.default(x = max(specy[Which2]) - specy[Which2],
+ y = Obj$Wave2[Which2], type = "l", lwd = graphparm$lwd + 1,
+ ann = FALSE)
+ }
R> if (!is.null(specx)) {
+ screen(2)
+ par(xaxt = "n", yaxt = "n", mar = c(0, 0, 0, 0), bty = "n", xaxs = "i")
+ plot.default(x = Obj$Wave1[Which1], y = specx[Which1], type = "l",
+ lwd = graphparm$lwd + 1, ann = FALSE)
+ }

The centerpiece of the 2D plot is the 2D correlation spectrum depicted in Screen 3. To get a
flexible plotting function plot_corr2d() features a lot of control arguments for the main part.
In line with the underlying functions contour() and image() which are used for plotting the
2D spectrum plot_corr2d() has a zlim argument to define the range of the z-axis. Next
the function plot_corr2d() builds N contour or image levels, which are evenly distributed
along a modified z-axis. The levels are calculated using the maximum absolute value among
all z-values. The color values for each level are calculated using the levels derived from the
modified z-axis. The 2D plot uses the colors dark blue and cyan for negative z-values as
well as yellow, red and dark red for positive z-values. The colors are taken from function
designer.colors() from package fields. After the calculation of the color values the “real”
contour or image levels are calculated using the borders defined by zlim.
This procedure looks unnecessary complicated at first, but the procedure ensures that the
most extreme colors (dark blue for negative values and dark red for positive values) are used
for the most extreme absolute z-values. The advantage of this approach is that positive and
negative levels can be compared with each other by looking at the color code. When using
just the number range provided by zlim this is not possible. As an example consider z-values
ranging from −1 to 9. These values should be plotted with 9 levels. When using the original
z-range (−1 to 9) for the calculation of the color code the color dark blue would be assigned
to the level at −1 because it is the most extreme negative value and the color dark red would
be assigned to the level at 9 because it is the most extreme positive value. By looking at the
resulting 2D spectrum one would get the impression that “the dark blue level is as negative as
the dark red level is positive” which is clearly not the case. By using the range defined by the
most extreme absolute z-value (−9 to 9) for the calculation of the color code the color dark
blue gets assigned to the (non-existent) level −9, whereas the color dark red still gets assigned
to the level 9. The z-value −1 will now be plotted using the color cyan, which indicates a
small negative value when compared to the level at 9 which is depicted in dark red.
In addition to the already discussed features, plot_corr2d() always uses an odd number of
contour or image levels. The odd number of contour levels leads to a symmetric distribution
of the contour and image levels in an asynchronous 2D homo-correlation spectrum. Asyn-
chronous homo-correlation spectra are skew-symmetric regarding the diagonal and thus the
absolute values of the positive and negative correlation intensities are always identical. The
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odd number of contour or image levels also accomplishes that positive and negative values
are represented by the same number of levels (in reference to the most extreme absolute
z-value) and that the level around 0 can always be transparent to suppress the plotting of
noise. Therefore, it can happen that no blue (or no yellow-red) levels are drawn, because
the positive (or negative) values are much larger than the negative (or positive) values that
the equal spacing of the levels leads to an agglomeration of all negative (or positive) values
inside the level around 0, which will be transparent. To circumvent this problem the number
of contour levels has to be increased.
The argument Cutout can be used to set more levels than the central level around 0 trans-
parent. This argument can be used to simplify 2D correlation spectra when starting the
interpretation of a new 2D correlation spectrum where one would like to have a look at the
strongest correlation first and then gradually work through smaller correlations. Care should
be taken when using the Cutout argument as it can also be used to erase unwanted signals
and thus create unrealistic 2D correlation spectra. The code snippet illustrates how this is
implemented in R code.

R> screen(3)
R> if (is.null(zlim)) {
+ zlim <- range(what[Which1, Which2])
+ }
R> if (N%%2 == 0) {
+ N <- N + 1
+ }
R> Where <- seq(-max(abs(zlim)), max(abs(zlim)), length.out = N)
R> if (is.null(Cutout)) {
+ OM <- which(Where < 0)
+ OP <- which(Where > 0)
+ } else {
+ OM <- which(Where <= Cutout[1])
+ OP <- which(Where >= Cutout[2])
+ }
R> COL <- rep("transparent", length(Where))
R> COL[OM] <- fields::designer.colors(col = c("darkblue", "cyan"),
+ n = length(OM))
R> COL[OP] <- fields::designer.colors(col = c("yellow", "red", "darkred"),
+ n = length(OP))
R> COL[(N + 1)/2] <- "transparent"
R> COL <- COL[which(zlim[1] < Where & Where < zlim[2])]
R> Where <- seq(zlim[1], zlim[2], length.out = length(COL))

After the calculation of the color code and the contour or image levels the actual 2D correlation
spectrum is drawn either by contour() or by image() (both from package graphics). The
preferred function can be selected from the logical argument Contour in plot_corr2d().
Both functions use the subset matrix what[Which1, Which2] as z-values and the subset
vectors Obj$Wave1[Which1] and Obj$Wave2[Which2] as respective x- or y-values. By default
plot_corr2d() plots the synchronous 2D correlation spectrum as specified by Re(Obj$FT).
The normal axes and axis labels are suppressed to allow for a flexible definition by the user.
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After the plotting of the 2D plot, a white line gets drawn across the 2D spectrum which
highlights the main diagonal in a 2D homo-correlation spectrum. Afterwards a box is drawn
around the 2D plot, the x- and y-axis are added and the x- and y-axis labels get added as
specified by arguments xlab and ylab. The axes of the 2D plot can be suppressed by using
the argument axes in plot_corr2d(). The input arguments lwd and cex can be used to
adjust the line width of the axes and the surrounding box as well as the size of the axes
labels.

R> par(xaxt = "n", yaxt = "n", mar = c(0, 0, 0, 0), bty = "n",
+ xaxs = "i", yaxs = "i")
R> if (Contour == TRUE) {
+ graphics::contour(x = Obj$Wave1[Which1], y = Obj$Wave2[Which2],
+ z = what[Which1, Which2], col = COL, levels = Where, zlim = zlim,
+ drawlabels = FALSE, ...)
+ } else {
+ graphics::image(x = Obj$Wave1[Which1], y = Obj$Wave2[Which2],
+ z = what[Which1, Which2], col = COL, xlab = "", ylab = "",
+ zlim = zlim, ...)
+ }
R> abline(a = 0, b = 1, col = rgb(red = 1, green = 1, blue = 1,
+ alpha = 0.5), lwd = graphparm$lwd)
R> par(xpd = NA, xaxt = "s", yaxt = "s", xaxs = "i", yaxs = "i",
+ cex = graphparm$cex, mar = c(0, 0, 0, 0))
R> box(which = "figure", lwd = graphparm$lwd)
R> if ((axes == 1) | (axes == 3)) {
+ axis(side = 1, lwd = graphparm$lwd)
+ }
R> if ((axes == 2) | (axes == 3)) {
+ axis(side = 4, las = 2, lwd = graphparm$lwd)
+ }
R> mtext(side = 1, xlab, line = 3.5, cex = graphparm$cex * 1.3,
+ lwd = graphparm$lwd)
R> mtext(side = 4, ylab, line = 3.5, cex = graphparm$cex * 1.3,
+ lwd = graphparm$lwd)

The color code legend is plotted in Screen 7. For the legend the function image.plot()
from package fields is used. Most arguments defined in image.plot() by plot_corr2d()
are for setting the margins of the plot and arranging the number legend. The color code
legend in plot_corr2d() has two number values written next to it specifying the 10% and
90% quantile of the plotted z-values. The legend can be turned off by setting the argument
Legend in plot_corr2d() to FALSE. The specified pin parameter is a small hack to avoid
an error produced by image.plot() in combination with the split.screen() environment.
The argument cex.axis can be defined at the input to adjust the size of the legend labels.
After finishing all plotting tasks plot_corr2d() changes back to the main 2D plot in Screen
3, closes all but Screen 3 and restores the old par parameters. By keeping Screen 3 active
the user can add points or lines to the central screen and can read out data interactively by
using the function locator().
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R> if (Legend == TRUE) {
+ screen(7)
+ par(pin = abs(par()$pin))
+ if (Contour == TRUE) {
+ fields::image.plot(z = what[Which1, Which2], legend.only = TRUE,
+ smallplot = c(0.15, 0.3, 0.2, 0.8), col = COL,
+ axis.args = list(at = quantile(Where, prob = c(0.1, 0.9)),
+ labels = format(x = quantile(Where, prob = c(0.1, 0.9)),
+ digit = 2, scientific = TRUE), cex.axis = graphparm$cex.axis),
+ zlim = zlim, graphics.reset = TRUE)
+ } else {
+ fields::image.plot(z = what[Which1, Which2], legend.only = TRUE,
+ smallplot = c(0.15, 0.3, 0.2, 0.8), col = COL,
+ axis.args = list(at = range(what[Which1, Which2]),
+ labels = format(x = range(what[Which1, Which2]),
+ digits = 2, scientific = TRUE), cex.axis = graphparm$cex.axis),
+ graphics.reset = TRUE)
+ }
+ }
R> screen(3, new = FALSE)
R> close.screen(c(1, 2, 4, 5, 6, 7))

The 3D plotting function plot_corr2din3d() works a little bit different than the 2D plotting
function plot_corr2d() because it is meant for creating impressive 3D figures of 2D corre-
lation spectra and not so much for scientific exact representation of 2D correlation spectra.
Thus, plot_corr2din3d() takes a matrix Mat (for example the synchronous 2D correlation
spectrum Re(Obj$FT) from an object of class ‘corr2d’), builds arbitrary x- and y-axes, plots
the 3D surface using the function drape.plot() from package fields and adds user defined
1D spectra to the x- and y-axis.
The creation of arbitrary x- and y-axes is simply done by using the number of rows and
columns in matrix Mat. To reduce the computational demand when plotting the 3D surface
the function plot_corr2din3d() has the argument reduce. The argument reduce allows the
user to resample the input matrix. The resampling is done using the function resample()
from package mmand. When the matrix is resampled the x- and y-axes are also resampled
to match the new matrix. The code snippet shows the axis generation and the resampling.
R> par_old <- par(no.readonly = TRUE)
R> on.exit(options(par(par_old)), add = TRUE)
R> x <- 1:NROW(Mat)
R> y <- 1:NCOL(Mat)
R> if (!is.null(reduce)) {
+ Which.x <- (1:length(x))[which(1:length(x)%%reduce == 0)]
+ Which.y <- (1:length(y))[which(1:length(y)%%reduce == 0)]
+ Mat <- mmand::resample(x = Mat, points =
+ list(x = x[Which.x], y = y[Which.y]), kernel = mmand::boxKernel())
+ x <- x[Which.x]
+ y <- y[Which.y]
+ }
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If no color palette is specified at argument Col than plot_corr2din3d() builds the color
specification from the z-values inside the matrix Mat. Breaks describes the numerical divisions
of the color scale, which are used by drape.plot() for plotting the 3D surface. If no zlim
argument, which describes the z-axis of the 3D plot, is specified than the zlim argument is
also built from the input matrix. The HCL (hue-chroma-luminance) color space is superior to
the widespread RGB (red-green-blue) color space (Zeileis, Hornik, and Murrell 2009; Stauffer,
Mayr, Dabernig, and Zeileis 2015). Thus, plot_corr2din3d() uses the diverging HCL color
palette from package colorspace (Zeileis et al. 2019) as default value.

R> N <- length(Col)
R> Zero <- 0
R> Max <- max(Mat)
R> Min <- min(Mat)
R> if (N%%2 == 0) {
+ Breaks <- c(seq(Min, Zero, length.out = round(N / 2, 0) + 1),
+ seq(Zero, Max, length.out =
+ round(N / 2, 0) + 1)[2:(round(N / 2, 0) + 1)])
+ } else {
+ Breaks <- c(seq(Min, Zero, length.out =
+ round(N / 2, 0) + 2)[1:(round(N / 2, 0) + 1)], seq(Zero, Max,
+ length.out = round(N / 2, 0) + 2)[2:(round(N / 2, 0) + 2)])
+ }
R> if (is.null(zlim)) {
+ zlim <- range(Mat, na.rm = TRUE)
+ }

All previously defined parameters are then fused together inside drape.plot() which plots
the 3D surface for the first time. Arguments specified at ... in plot_corr2din3d() are
handed over to drape.plot(). The most important arguments are the two viewing angles
theta (x-y rotation) and phi (z-rotation) as well as the argument border which takes a color
and adds a grid in that color to the 3D surface.
drape.plot() returns a projection matrix which can be used to add a 2D projection of the
3D surface to the bottom of the plot. Unfortunately, drape.plot() has to be executed
once to get the projection matrix. If the 2D surface is simply added to the 3D plot it may
overlap with the 3D surface depending on the viewing angles. To circumvent this problem
plot_corr2din3d() first executes drape.plot(), then adds the 2D surface and in the end
executes drape.plot() once more to overlay the 2D projection with the 3D surface. The
addition of a 2D projection can be specified at argument projection. The coordinates for
the 2D projection are calculated by the function trans3d() from grDevices and the 2D plot
is drawn by polygon().

R> if (projection == TRUE) {
+ WW <- fields::drape.plot(x = x, y = y, z = Mat, col = Col,
+ breaks = Breaks, zlim = zlim, ...)
+ COL <- fields::drape.color(z = Mat, col = Col,
+ zlim = zlim, breaks = Breaks)$color.index
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+ for (i in 2:NROW(Mat)) {
+ for (j in 2:NCOL(Mat)) {
+ Points <- grDevices::trans3d(
+ y = y[c(j - 1, j, j, j - 1, j - 1)],
+ x = x[c(i - 1, i - 1, i, i, i - 1)],
+ z = rep(zlim[1], length(5)), pmat = WW)
+ polygon(Points$x, Points$y, border = NA, col = COL[i - 1, j - 1])
+ }
+ }
+ par(new = TRUE)
+ fields::drape.plot(x = x, y = y, z = Mat, col = Col,
+ breaks = Breaks, zlim = zlim, ...)
+ } else {
+ WW <- fields::drape.plot(x = x, y = y, z = Mat, col = Col,
+ breaks = Breaks, zlim = zlim, ...)
+ }

After the 3D surface and its 2D projection are drawn plot_corr2din3d() can add custom
spectra to the x- and y-axis. For this reason a new x- and/or y-axis gets calculated where
the length is equal to the length of the spectra specx or specy. The x- and y-arguments
for the function lines() are calculated using the aforementioned projection matrix WW and
once again the function trans3d(). The scaling factors scalex and scaley are real numbers
and are used to scale the spectra. Positive values at scalex and scaley ensure that the
spectra are plotted inside the box of the 3D plot (where the 2D projection is also located)
whereas negative values place the spectra on the outside of the box. After all plots are done
the function plot_corr2din3d() restores the old par parameters.

R> if (!is.null(specx)) {
+ if (is.null(scalex)) {
+ scalex <- 1
+ }
+ X <- seq(min(x), max(x), length.out = length(specx))
+ Points.x <- grDevices::trans3d(x = X, y = min(y) + scalex * specx,
+ z = rep(zlim[1], length(X)), pmat = WW)
+ lines(x = Points.x$x, Points.x$y, lwd = 2)
+ }
R> if (!is.null(specy)) {
+ if (is.null(scaley)) {
+ scaley <- 1
+ }
+ Y <- seq(min(y), max(y), length.out = length(specy))
+ Points.y <- grDevices::trans3d(y = Y, x = max(x) - scaley * specy,
+ z = rep(zlim[1], length(Y)), pmat = WW)
+ lines(x = Points.y$x, Points.y$y, lwd = 2)
+ }
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5. Conclusion and outlook
In this paper we demonstrated how to use our R package corr2D to calculate and visualize
2D correlation spectra from artificial and real data. The implementation into R offers the
advantage to preprocess, correlate, visualize and further analyze data in one open-source
program, which was not easily possible before and should help to make the technique of
2D correlation spectroscopy more accessible. For the calculation of the complex correlation
spectra we use a parallel fast Fourier transformation approach, which can be adjusted by the
user to best fit their needs. The paper also featured a detailed look on the inner workings of
our package to help the user understand what is going on during the calculation.
In the future we plan on implementing the Hilbert transformation approach into the package
as well as advanced 2D correlation spectroscopy techniques like moving-window 2D correlation
spectroscopy, 2D codistribution spectroscopy or double 2D correlation spectroscopy. The
implementation of advanced techniques into the package will help to make the package more
interesting for seasoned spectroscopists and to make new 2D correlation approaches available
to a broad user base. Furthermore we also aim to add a graphical user interface via shiny
(Chang, Cheng, Allaire, Xie, and McPherson 2019) to the package, which will allow users
without any programming experience to use the package as well.
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