89 research outputs found

    Regulatory T Cells Suppress Natural Killer Cells during Plasmid DNA Vaccination in Mice, Blunting the CD8+ T Cell Immune Response by the Cytokine TGFβ

    Get PDF
    regulatory T cells (Tregs) suppress adaptive T cell-mediated immune responses to self- and foreign-antigens. Tregs may also suppress early innate immune responses to vaccine antigens and might decrease vaccine efficacy. NK and NKT cells are the first responders after plasmid DNA vaccination and are found at the site of inoculation. Earlier reports demonstrated that NKT cells could improve plasmid DNA efficacy, a phenomenon not found for NK cells. In fact, it has been shown that under certain disease conditions, NK cells are suppressed by Tregs via their release of IL-10 and/or TGFβ. Therefore, we tested the hypothesis that NK cell function is suppressed by Tregs in the setting of plasmid DNA vaccination. T cells. We found that this phenomenon is dependent on the secretion of cytokine TGFβ by Tregs, and independent of IL-10.Our data indicate a crucial function for Tregs in blocking plasmid DNA vaccine-elicited immune responses, revealing potentially novel strategies for improving the efficiency of plasmid DNA vaccines including chemical- or antibody-induced localized blockage of Treg-mediated suppression of NK cells at the site of plasmid DNA vaccine inoculation

    In Vivo Anti-HIV Activity of the Heparin-Activated Serine Protease Inhibitor Antithrombin III Encapsulated in Lymph-Targeting Immunoliposomes

    Get PDF
    Endogenous serine protease inhibitors (serpins) are anti-inflammatory mediators with multiple biologic functions. Several serpins have been reported to modulate HIV pathogenesis, or exhibit potent anti-HIV activity in vitro, but the efficacy of serpins as therapeutic agents for HIV in vivo has not yet been demonstrated. In the present study, we show that heparin-activated antithrombin III (hep-ATIII), a member of the serpin family, significantly inhibits lentiviral replication in a non-human primate model. We further demonstrate greater than one log10 reduction in plasma viremia in the nonhuman primate system by loading of hep-ATIII into anti-HLA-DR immunoliposomes, which target tissue reservoirs of viral replication. We also demonstrate the utility of hep-ATIIII as a potential salvage agent for HIV strains resistant to standard anti-retroviral treatment. Finally, we applied gene-expression arrays to analyze hep-ATIII-induced host cell interactomes and found that downstream of hep-ATIII, two independent gene networks were modulated by host factors prostaglandin synthetase-2, ERK1/2 and NFκB. Ultimately, understanding how serpins, such as hep-ATIII, regulate host responses during HIV infection may reveal new avenues for therapeutic intervention

    Serpin Induced Antiviral Activity of Prostaglandin Synthetase-2 against HIV-1 Replication

    Get PDF
    The serine protease inhibitors (serpins) are anti-inflammatory proteins that have various functions. By screening a diverse panel of viruses, we demonstrate that the serpin antithrombin III (ATIII) has a broad-spectrum anti-viral activity for HIV-1, HCV and HSV. To investigate the mechanism of action in more detail we investigated the HIV-1 inhibition. Using gene-expression arrays we found that multiple host cell signal transduction pathways were activated by ATIII in HIV-1 infected cells but not in uninfected controls. Moreover, the signal pathways initiated by ATIII treatment, were more than 200-fold increased by the use of heparin-activated ATIII. The most up-regulated transcript in HIV-1 infected cells was prostaglandin synthetase-2 (PTGS2). Furthermore, we found that over-expression of PTGS2 reduced levels of HIV-1 replication in human PBMC. These findings suggest a central role for serpins in the host innate anti-viral response. Host factors such as PTGS2 elicited by ATIII treatment could be exploited in the development of novel anti-viral interventions

    A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging

    No full text
    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy

    Mucosal Application of gp140 Encoding DNA Polyplexes to Different Tissues Results in Altered Immunological Outcomes in Mice

    Get PDF
    Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG(+) and IgA(+) antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge

    Identification of HIV-1 Epitopes that Induce the Synthesis of a R5 HIV-1 Suppression Factor by Human CD4+ T Cells Isolated from HIV-1 Immunized Hu-PBL SCID Mice

    Get PDF
    We have previously reported that immunization of the severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood mononuclear cells (PBMC) (hu-PBL-SCID mice) with inactivated human immunodeficiency virus type-1 (HIV-1)-pulsed-autologous dendritic cells (HIV-DC) elicits HIV-1-reactive CD4+ T cells that produce an as yet to be defined novel soluble factor in vitro with anti-viral properties against CCR5 tropic (R5) HIV-1 infection. These findings led us to perform studies designed to identify the lineage of the cell that synthesizes such a factor in vitro and define the epitopes of HIV-1 protein that have specificity for the induction of such anti-viral factor. Results of our studies show that this property is a function of CD4+ but not CD8+ T cells. Human CD4+ T cells were thus recovered from the HIV-DC-immunized hu-PBL-SCID mice and were re-stimulated in vitro by co-culture for 2 days with autologous adherent PBMC as antigen presenting cells, APC previously pulsed with inactivated HIV in IL-2-containing medium to expand HIV-1-reactive CD4+ T cells. Aliquots of these re-stimulated CD4+ T cells were then co-cultured with similar APC's that were previously pulsed with 10 μg/ml of a panel of HIV peptides for an additional 2 days, and their culture supernatants were examined for the production of both the R5 HIV-1 suppression factor and IFN-Υ. The data presented herein show that the HIV-1 primed CD4+ T cells produced the R5 suppression factor in response to a wide variety of HIV-1 gag, env, pol, nef or vif peptides, depending on the donor of the CD4+ T cells. Simultaneous production of human interferon (IFN)-Υ was observed in some cases. These results indicate that human CD4+ T cells in PBMC of HIV-1 naive donors have a wide variety of HIV-1 epitope-specific CD4+ T cell precursors that are capable of producing the R5 HIV-1 suppression factor upon DC-based vaccination with whole inactivated HIV-1

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Modified Vaccinia Virus Ankara-Based Vaccine Vectors Induce Apoptosis in Dendritic Cells Draining from the Skin via both the Extrinsic and Intrinsic Caspase Pathways, Preventing Efficient Antigen Presentation

    Get PDF
    Dendritic cells (DC) are potent antigen-presenting cells and central to the induction of immune responses following infection or vaccination. The collection of DC migrating from peripheral tissues by cannulation of the afferent lymphatic vessels provides DC which can be used directly ex vivo without extensive in vitro manipulations. We have previously used bovine migrating DC to show that recombinant human adenovirus 5 vectors efficiently transduce afferent lymph migrating DEC-205(+) CD11c(+) CD8(-) DC (ALDC). We have also shown that recombinant modified vaccinia virus Ankara (MVA) infects ALDC in vitro, causing downregulation of costimulatory molecules, apoptosis, and cell death. We now show that in the bovine system, modified vaccinia virus Ankara-induced apoptosis in DC draining from the skin occurs soon after virus binding via the caspase 8 pathway and is not associated with viral gene expression. We also show that after virus entry, the caspase 9 pathway cascade is initiated. The magnitude of T cell responses to mycobacterial antigen 85A (Ag85A) expressed by recombinant MVA-infected ALDC is increased by blocking caspase-induced apoptosis. Apoptotic bodies generated by recombinant MVA (rMVA)-Ag85A-infected ALDC and containing Ag85A were phagocytosed by noninfected migrating ALDC expressing SIRPα via actin-dependent phagocytosis, and these ALDC in turn presented antigen. However, the addition of fresh ALDC to MVA-infected cultures did not improve on the magnitude of the T cell responses; in contrast, these noninfected DC showed downregulation of major histocompatibility complex class II (MHC-II), CD40, CD80, and CD86. We also observed that MVA-infected ALDC promoted migration of DEC-205(+) SIRPα(+) CD21(+) DC as well as CD4(+) and CD8(+) T cells independently of caspase activation. These in vitro studies show that induction of apoptosis in DC by MVA vectors is detrimental to the subsequent induction of T cell responses

    Novel Platforms for the Development of a Universal influenza vaccine

    Get PDF
    Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenzavirus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.Funding Agencies|GlaxoSmithKline Biologicals SA; Marie-Curie IEF grant SAMUFLU FP7-PEOPLE-IEF [626283]; Marie-Curie ITN grant HOMIN FP7-PEOPLE-ITN [626283]</p
    corecore