17 research outputs found

    Analysis of Global Sumoylation Changes Occurring during Keratinocyte Differentiation

    Get PDF
    Sumoylation is a highly dynamic process that plays a role in a multitude of processes ranging from cell cycle progression to mRNA processing and cancer. A previous study from our lab demonstrated that SUMO plays an important role in keratinocyte differentiation. Here we present a new method of tracking the sumoylation state of proteins by creating a stably transfected HaCaT keratinocyte cell line expressing an inducible SNAP-SUMO3 protein. The SNAP-tag allows covalent fluorescent labeling that is denaturation resistant. When combined with two-dimensional gel electrophoresis, the SNAP-tag technology provides direct visualization of sumoylated targets and can be used to follow temporal changes in the global cohort of sumoylated proteins during dynamic processes such as differentiation. HaCaT keratinocyte cells expressing SNAP-SUMO3 displayed normal morphological and biochemical features that are consistent with typical keratinocyte differentiation. SNAP-SUMO3 also localized normally in these cells with a predominantly nuclear signal and some minor cytoplasmic staining, consistent with previous reports for untagged SUMO2/3. During keratinocyte differentiation the total number of proteins modified by SNAP-SUMO3 was highest in basal cells, decreased abruptly after induction of differentiation, and slowly rebounded beginning between 48 and 72 hours as differentiation progressed. However, within this overall trend the pattern of change for individual sumoylated proteins was highly variable with both increases and decreases in amount over time. From these results we conclude that sumoylation of proteins during keratinocyte differentiation is a complex process which likely reflects and contributes to the biochemical changes that drive differentiation

    Diaphragm function in patients with Covid-19-related acute respiratory distress syndrome on venovenous extracorporeal membrane oxygenation

    No full text
    Abstract Background Venovenous extracorporeal membrane oxygenation (VV ECMO) is frequently associated with deep sedation and neuromuscular blockades, that may lead to diaphragm dysfunction. However, the prevalence, risk factors, and evolution of diaphragm dysfunction in patients with VV ECMO are unknown. We hypothesized that the prevalence of diaphragm dysfunction is high and that diaphragm activity influences diaphragm function changes. Methods Patients with acute respiratory distress syndrome (ARDS) requiring VV ECMO were included in two centers. Diaphragm function was serially assessed by measuring the tracheal pressure in response to phrenic nerve stimulation (Ptr,stim) from ECMO initiation (Day 1) until ECMO weaning. Diaphragm activity was estimated from the percentage of spontaneous breathing ventilation and by measuring the diaphragm thickening fraction (TFdi) with ultrasound. Results Sixty-three patients were included after a median of 4 days (3–6) of invasive mechanical ventilation. Diaphragm dysfunction, defined by Ptr, stim ≤ 11 cmH2O, was present in 39 patients (62%) on Day 1 of ECMO. Diaphragm function did not change over the study period and was not influenced by the percentage of spontaneous breathing ventilation or the TFdi during the 1 week. Among the 63 patients enrolled in the study, 24 (38%) were still alive at the end of the study period (60 days). Conclusions Sixty-two percent of patients undergoing ECMO for ARDS related to SARS CoV-2 infection had a diaphragm dysfunction on Day 1 of ECMO initiation. Diaphragm function remains stable over time and was not associated with the percentage of time with spontaneous breathing. ClinicalTrials.gov Identifier NCT04613752 (date of registration February 15, 2021)

    Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: a retrospective cohort study

    No full text
    International audienceBackground: The data on incidence, clinical presentation, and outcomes of ventilator-associated pneumonia (VAP) in patients with severe coronavirus disease 2019 (COVID-19) pneumonia requiring mechanical ventilation (MV) are limited. We performed this retrospective cohort study to assess frequency, clinical characteristics, responsible pathogens, and outcomes of VAP in patients COVID-19 pneumonia requiring MV between March 12th and April 24th, 2020 (all had RT-PCR-confirmed SARS-CoV-2 infection). Patients with COVID-19-associated acute respiratory distress syndrome (ARDS) requiring ECMO were compared with an historical cohort of 45 patients with severe influenza-associated ARDS requiring ECMO admitted to the same ICU during the preceding three winter seasons.Results: Among 50 consecutive patients with Covid-19-associated ARDS requiring ECMO included [median (IQR) age 48 (42-56) years; 72% male], 43 (86%) developed VAP [median (IQR) MV duration before the first episode, 10 (8-16) days]. VAP-causative pathogens were predominantly Enterobacteriaceae (70%), particularly inducible AmpC-cephalosporinase producers (40%), followed by Pseudomonas aeruginosa (37%). VAP recurred in 34 (79%) patients and 17 (34%) died. Most recurrences were relapses (i.e., infection with the same pathogen), with a high percentage occurring on adequate antimicrobial treatment. Estimated cumulative incidence of VAP, taking into account death and extubation as competing events, was significantly higher in Covid-19 patients than in influenza patients (p = 0.002). Despite a high P. aeruginosa-VAP rate in patients with influenza-associated ARDS (54%), the pulmonary infection recurrence rate was significantly lower than in Covid-19 patients. Overall mortality was similar for the two groups.Conclusions: Patients with severe Covid-19-associated ARDS requiring ECMO had a very high late-onset VAP rate. Inducible AmpC-cephalosporinase-producing Enterobacteriaceae and Pseudomonas aeruginosa frequently caused VAP, with multiple recurrences and difficulties eradicating the pathogen from the lung
    corecore