28 research outputs found

    Atypical long-latency auditory event-related potentials in a subset of children with specific language impairment

    Get PDF
    It has been proposed that specific language impairment (SLI) is the consequence of low-level abnormalities in auditory perception. However, studies of long-latency auditory ERPs in children with SLI have generated inconsistent findings. A possible reason for this inconsistency is the heterogeneity of SLI. The intraclass correlation (ICC) has been proposed as a useful statistic for evaluating heterogeneity because it allows one to compare an individual's auditory ERP with the grand average waveform from a typically developing reference group. We used this method to reanalyse auditory ERPs from a sample previously described by Uwer, Albrecht and von Suchodoletz (2002). In a subset of children with receptive SLI, there was less correspondence (i.e. lower ICC) with the normative waveform (based on the control grand average) than for typically developing children. This poorer correspondence was seen in responses to both tone and speech stimuli for the period 100–228 ms post stimulus onset. The effect was lateralized and seen at right- but not left-sided electrodes

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    ç¶“æżŸć­žć…šé›†ă€Œç”±èšˆć­žă€ă‚’èź€ă‚€

    Get PDF
    39 pages, 11 captioned figures, 8 tables (5 of them in Appendix A), authors from page 33, submitted to JHEP, figures at http://aliceinfo.cern.ch/ArtSubmission/node/2359 ; see paper for full list of authorsInternational audienceThe measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV with the ALICE detector at the LHC is reported. D0^0, D+^+ and D∗+^{*+} mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range −0.96<ycms<0.04-0.96< y_{\mathrm{cms}}<0.04 and transverse momentum interval 1<pT<241<p_{\rm T}<24 GeV/cc. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D0^0, D+^+ and D∗+^{*+} are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured pTp_{\rm T} regions and event classes. The relative D-meson yields, calculated in various pTp_{\rm T} intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at s=7\sqrt{s}=7 TeV as well as with EPOS~3 calculations

    Measurement of an excess in the yield of J/psi at very low p(T) in Pb-Pb collisions at root s(NN)=2.76 TeV

    No full text
    1162

    ALICE luminosity determination for Pb−-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceLuminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb–Pb collisions at a centre-of-mass energy per nucleon pair of √sNN_{NN} = 5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan.This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb–Pb collisions at √sNN_{NN} = 5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67 ± 0.25 b, in agreement with predictions using the Glauber model

    Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

    No full text
    Correlations between mean transverse momentum [pT] and anisotropic flow coefficients v2 or v3 are measured as a function of centrality in Pb–Pb and Xe–Xe collisions at √sNN = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT], v2, and v3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo initialstate shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pT] and vn are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quark–gluon plasma recreated in relativistic heavy-ion collisions

    Measurement of ψ\psi(2S) production as a function of charged-particle pseudorapidity density in pp collisions at s\sqrt{s} = 13 TeV and p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 8.16 TeV with ALICE at the LHC

    No full text
    International audienceProduction of inclusive charmonia in pp collisions at center-of-mass energy of s \sqrt{s} = 13 TeV and p–Pb collisions at center-of-mass energy per nucleon pair of sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5 < ycms_{cms}< 4.0 for pp collisions, and 2.03 < ycms_{cms}< 3.53 and −4.46 < ycms_{cms}< −2.96 for p–Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η| < 1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations.[graphic not available: see fulltext
    corecore