15 research outputs found

    Automated assignment of ionization states in broad-mass matrix-assisted laser desorption/ionization spectra of protein mixtures

    Get PDF
    A computational technique is presented for the automated assignment of the multiple charge and multimer states (ionization states) in the time-of-flight (TOF) domain for matrix-assisted laser desorption/ionization (MALDI) spectra. Examples of the application of this technique include an improved, automatic calibration over the 2 to 70 kDa mass range and a reduced data redundancy after reconstruction of the molecular spectrum of only singly charged monomers. This method builds on our previously reported enhancement of broad-mass signal detection, and includes two steps: (1) an automated correction of the instrumental acquisition initial time delay, and (2) a recursive TOF detection of multiple charge states and singly charged multimers of molecular [MH](+) ions over the entire record range, based on MALDI methods. The technique is tested using calibration mixtures and pooled serum quality control samples acquired along with clinical study data. The described automated procedure improves the analysis and dimension reduction of MS data for comparative proteomics applications. Copyright (C) 2009 John Wiley & Sons, Ltd

    Fully denaturing two-dimensional electrophoresis of membrane proteins: a critical update

    Get PDF
    The quality and ease of proteomics analysis depends on the performance of the analytical tools used, and thus of the performances of the protein separation tools used to deconvolute complex protein samples. Among protein samples, membrane proteins are one of the most difficult sample classes, because of their hydrophobicity and embedment in the lipid bilayers. This review deals with the recent progresses and advances made in the separation of membrane proteins by 2-DE separating only denatured proteins. Traditional 2-D methods, i.e., methods using IEF in the first dimension are compared to methods using only zone electrophoresis in both dimensions, i.e., electrophoresis in the presence of cationic or anionic detergents. The overall performances and fields of application of both types of method is critically examined, as are future prospects for this field

    Membrane proteins and proteomics: Love is possible, but so difficult

    Get PDF
    Despite decades of extensive research, the large-scale analysis of membrane proteins remains a difficult task. This is due to the fact that membrane proteins require a carefully balanced hydrophilic and lipophilic environment, which optimum varies with different proteins, while most protein chemistry methods work mainly, if not only, in water-based media. Taking this review [Santoni, Molloy and Rabilloud, Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000, 21, 1054-1070] as a pivotal paper, the current paper analyzes how the field of membrane proteomics exacerbated the trend in proteomics, i.e. developing alternate methods to the historical two-dimensional electrophoresis, and thus putting more and more pressure on the mass spectrometry side. However, in the case of membrane proteins, the incentive in doing so is due to the poor solubility of membrane proteins. This review also shows that in some situations, where this solubility problem is less acute, two-dimensional electrophoresis remains a method of choice. Last but not least, this review also critically examines the alternate approaches that have been used for the proteomic analysis of membrane proteins

    Optimal preparation methods for automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling of low molecular weight proteins and peptides

    No full text
    Copyright © 2009 John Wiley & Sons, Ltd.Mass spectrometry (MS) profiling of the proteome and peptidome for disease-associated patterns is a new concept in clinical diagnostics. The technique, however, is highly sensitive to external sources of variation leading to potentially unacceptable numbers of false positive and false negative results. Before MS profiling can be confidently implemented in a medical setting, standard experimental methods must be developed that minimize technical variance. Past studies of variance have focused largely on pre-analytical variation (i.e., sample collection, handling, etc.). Here, we examined how factors at the analytical stage including the matrix and solid-phase extraction influence MS profiling. Firstly, a standard peptide/protein sample was measured automatically by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS across five consecutive days using two different preparation methods, dried droplet and sample/matrix, of four types of matrix: alpha-cyano-4-hydroxycinnamic acid (HCCA), sinapinic acid (SA), 2,5-dihydroxybenzoic acid (DHB) and 2,5-dihydroxyacetophenone (DHAP). The results indicated that the matrix preparation greatly influenced a number of key parameters of the spectra including repeatability (within-day variability), reproducibility (inter-day variability), resolution, signal strength, background intensity and detectability. Secondly, an investigation into the variance associated with C8 magnetic bead extraction of the standard sample prior to automated MS profiling demonstrated that the process did not adversely affect these same parameters. In fact, the spectra were generally more robust following extraction. Thirdly, the best performing matrix preparations were evaluated using C8 magnetic bead extracted human plasma. We conclude that the DHAP prepared according to the dried-droplet method is the most appropriate matrix to use when performing automated MS profiling.Megan A. S. Penno, Matthias Ernst and Peter Hoffman
    corecore