154 research outputs found

    Bioaffinity sensor based on nanoarchitectonic films: control of the specific adsorption of proteins through the dual role of an ethylene oxide spacer.

    Get PDF
    The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins. We choose ovalbumin as an example. Thanks to the versatility of PEM films, the platform was built on two types of sensor surface and was evaluated using both optical- and viscoelastic-based techniques, namely, optical waveguide lightmode spectroscopy and the quartz crystal microbalance, respectively. A library of biotinylated poly(acrylic acids) (PAAs) was synthesized by grafting biotin moieties at different grafting ratios (GR). The biotin moieties were linked to the PAA chains through ethylene oxide (EO) spacers of different lengths. The adsorption of the PAA-EOn-biotin (GR) layer on a PEM precursor film allows tuning the surface density in biotin and thus the streptavidin adsorption mainly through the grafting ratio. The nonspecific adsorption of serum was reduced and even suppressed depending on the length of the EO arms. We showed that to obtain an antifouling polyelectrolyte the grafting of EO9 or EO19 chains at 25% in GR is sufficient. Thus, the spacer has a dual role: ensuring the antifouling property and allowing the accessibility of biotin moieties. Finally, an optimized platform based on the PAA-EO9-biotin (25%)/streptavidin/biotinylated-antibody architecture was built and demonstrated promising performance as interface architecture for bioaffinity sensing of a targeted protein, in our case, ovalbumin.journal articleresearch support, non-u.s. gov't2013 Jun 182013 02 11importe

    Refocusing multiple stressor research around the targets and scales of ecological impacts

    Full text link
    Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research

    Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling

    Get PDF
    Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements

    Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    Get PDF
    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore