35 research outputs found

    Biological Oxygen-dosed Activated Carbon (BODAC) filters – A bioprocess for ultrapure water production removing organics, nutrients and micropollutants

    Get PDF
    Biological oxygen-dosed activated carbon (BODAC) filters in an Ultrapure water plant were demonstrated to have the potential to further treat secondary wastewater treatment effluent. The BODAC filters were operated for 11 years without carbon regeneration or replacement, while still functioning as pre-treatment step to reverse osmosis (RO) membranes by actively removing organic micropollutants (OMPs) and foulants. In this study, the removal of nutrients and 13 OMPs from secondary wastewater treatment effluent was investigated for 2 years and simultaneously, the granules’ characterization and microbial community analysis were conducted to gain insights behind the stable long-term operation of the BODAC filters. The results showed that the BODAC granules' surface area was reduced by ∼70 % of what is in virgin carbon granules and covered by biofilm and inorganic depositions. The BODAC filters reduced the concentration of soluble organics, mainly proteins, performed as an effective nitrification system, and almost completely removed manganese. During the 2 years of observation, the filters consistently removed some OMPs such as hydrochlorothiazide, metoprolol, sotalol, and trimethoprim by at least 70 %. Finally, through microbial community analysis, we found that nitrifying and manganese-oxidizing bacteria were detected in high relative abundance on BODAC granules, supporting BODAC performance in removing OMPs and manganese as well as converting nitrogenous species in the water.</p

    Rapporto tecnico sulle attività di campionamento della “Campagna Oceanografica CISAS_1” Augusta-Priolo 19-23 ottobre 2017

    Get PDF
    Le attività di campionamento ed acquisizione dati svolte durante la campagna CISAS_1 si inseriscono in seno al progetto “Centro internazionale di studi avanzati su ambiente ed impatti su ecosistema e salute umana (CISAS)” del CNR. Tra gli obiettivi principali del progetto, lo sviluppo di una complessa e decisa azione di ricerca scientifica volta ad una profonda comprensione dei fenomeni di inquinamento ambientale e dei loro risvolti sull’ecosistema e la salute umana. Le aree di indagine del progetto sono rappresentate dai Siti di Interesse Nazionale di Priolo, Milazzo-Pace del Mela e Crotone che, per specificità e modalità di impatto antropogenico sull’ambiente, l’ecosistema e la salute umana, coprono un ampio spettro di tipologie di interesse

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Calcium effect on microbial activity and biomass aggregation during anaerobic digestion at high salinity

    No full text
    The potential effect of different Ca2+ additions (150, 300, 450, 600 and 1000 mg/L) on microbial activity and aggregation, during anaerobic digestion at moderate (8 g/L Na+) and high salinity (20 g/L Na+) has been investigated. Batch tests were carried out in duplicate serum bottles and operated for 30 days at 37 °C. At 8 g/L Na+, methanogenic activity and protein degradation were comparable from 150 to 450 mg/L Ca2+, and a significant inhibition was only observed at a Ca2+concentration of 1000 mg/L. In contrast, at 20 g/L Na+, 150 to 300 mg/L were the only Ca2+ concentrations to maintain chemical oxygen demand (COD) removal, protein hydrolysis and methane production. Overall, increasing Ca2+ concentrations had a larger impact on acetotrophic methanogenesis at 20 g/L than at 8 g/L Na+. Increasing Ca2+ had a negative effect on the aggregation behaviour of the dominant methanogen Methanosaeta when working at 8 g/L Na+. At 20 g/L Na+ the aggregation of Methanosaeta was less affected by addition of Ca2+ than at 8 g/L Na+. The negative effect appeared to be connected with Ca2+ precipitation and its impact on cell-to cell communication. The results highlight the importance of ionic balance for microbial aggregation at high salinity, bringing to the forefront the effect on Methanosaeta cells, known to be important to obtain anaerobic granules.</p
    corecore