89 research outputs found

    Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)

    Get PDF
    Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km<sup>2</sup> spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions

    Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface

    Get PDF
    Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopyatmosphere interface of a 13-14-m-tall uniform pine forest and a 33-m-tall nounuiform hardwood forest. These measurement were used to investigate whether the mixing layer (ML) analogy of Raupach et al. predicts eddy sizes and now characteristics responsible for much of the turbulent stresses and vertical scalar fluxes. For this purpose, wavelet spectra and cospectra were derived and analyzed. It was found that the MI. analogy predicts well vertical velocity variances and integral timescales. However, at low wavenumbers, inactive eddy motion signatures were present in horizontol velocity wavelet spectra, suggesting that MI. may not be suitable for scaling horizontal velocity perturbations. Momentum and scalar wavelet cospectra of turbulent stresses and scalar fluxes demonstrated that active eddy motion, which was shown by Raupach et al. to be the main energy contributor to vertical velocity (w) spectral energy (Em). is also the main scalar flux-transporting eddy motion. Predictions using ML of the peak E, frequency are in excellent agreement with measured waveled cospectral peaks of vertical fluxes (Kh = 1.5, where K is wavenumber and h is canopy height). Using Lorentz wavelet thresholding of vertical velocity time series, wavelet coefficients associated with active turbulence were identified. It was demonstrated that detection frequency of organized structures, as predicted from Lorentz wavelet filtering, relate to the arrival frequency /h and integral timescale, where is the mean horizontal velocity at height z = h. The newly proposed wavelet thresholding approach, which relies on a"global" wavelet threshold formulation for the energy in w, provides simultaneous energy-covariance-preserving characterization of "active" turbulence at the canopy-atmosphere interface

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG

    Get PDF
    The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention

    Viabilidade tĂ©cnica e econĂŽmica do uso de diferentes nĂ­veis de grĂŁos secos de destilaria com solĂșveis (Zea Mays L.) em borregas terminadas em confinamento

    Get PDF
    Avaliou-se a viabilidade da utilização de raçÔes contendo diferentes nĂ­veis de grĂŁos secos de destilaria com solĂșveis - GSDS (0, 8, 16 e 24%) em borregas confinadas. As raçÔes continham 65% de volumoso (silagem de milho) e 35% de concentrado (grĂŁo de milho moĂ­do, farelo de soja, grĂŁos secos de destilaria com solĂșveis e ureia). Foram utilizadas 16 borregas sem raça definida, com peso corporal (PC) inicial de 23,8 ± 1,5 kg, confinadas por 75 dias. Foi utilizado delineamento experimental inteiramente casualizados com quatro tratamentos. Os dados de consumo MS e ganho mĂ©dio diĂĄrio (GMD) das borregas alimentadas com os diferentes tratamentos foram submetidos Ă  anĂĄlise de variĂąncia e as diferenças obtidas foram analisadas por equação de regressĂŁo a 5% de significĂąncia. Os diferentes nĂ­veis de GSDS nĂŁo alteraram o GMD das cordeiras em confinamento. Pela simulação tĂ©cnica econĂŽmica, a diferença obtida no valor da receita total por carcaça das borregas foi de R26,93amaisparaarac\ca~oabasede16 26,93 a mais para a ração a base de 16% de GSDS em relação Ă  ração com 0% de GSDS. AlĂ©m disso, a ração com 24% de GSDS apresentou um valor de R 5,67 a menos em relação Ă  ração com 0% de GSDS. Foi verificado que as borregas alimentadas com os diferentes nĂ­veis de GSDS apresentaram uma receita de R18,00kg/carcac\ca,oqueproporcionouumadiferenc\cadeR 18,00 kg/carcaça, o que proporcionou uma diferença de R 2.693,00 na receita total entre as raçÔes contendo 16 e 0% de GSDS para um mĂłdulo de 100 animais. A diferença do valor da receita total foi reflexo do maior peso da carcaça quente de 11,4% para a ração com 16% GSDS em relação Ă  com 0% GSDS. A ração com 16% de GSDS apresentou um custo de R$ 1,48/kg menor em relação Ă  ração com 0% de GSDS. AlĂ©m disso, a ração com 16% de GSDS apresentou receita lĂ­quida total de 98,7% maior em relação Ă  ração com 0% de GSDS. O grĂŁo seco de destilaria com solĂșveis pode ser inserido na dieta de borregas em terminação em atĂ© 24% da ração total sem alterar o desempenho animal, e ao considerar a simulação econĂŽmica a utilização de 16% de inclusĂŁo de GSDS apresenta maior lucratividade

    NOTCH1 Signaling Promotes Human T-Cell Acute Lymphoblastic Leukemia Initiating Cell Regeneration in Supportive Niches

    Get PDF
    Leukemia initiating cells (LIC) contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL) and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated.We established humanized bioluminescent T-ALL LIC mouse models transplanted with pediatric T-ALL samples that were sequenced for NOTCH1 and other common T-ALL mutations. In this study, CD34(+) cells from NOTCH1(Mutated) T-ALL samples had higher leukemic engraftment and serial transplantation capacity than NOTCH1(Wild-type) CD34(+) cells in hematopoietic niches, suggesting that self-renewing LIC were enriched within the NOTCH1(Mutated) CD34(+) fraction. Humanized NOTCH1 monoclonal antibody treatment reduced LIC survival and self-renewal in NOTCH1(Mutated) T-ALL LIC-engrafted mice and resulted in depletion of CD34(+)CD2(+)CD7(+) cells that harbor serial transplantation capacity.These results reveal a functional hierarchy within the LIC population based on NOTCH1 activation, which renders LIC susceptible to targeted NOTCH1 inhibition and highlights the utility of NOTCH1 antibody targeting as a key component of malignant stem cell eradication strategies

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2&nbsp;m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315&nbsp;cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean&nbsp;=&nbsp;3.0&nbsp;\ub1&nbsp;2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6&nbsp;\ub1&nbsp;2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7&nbsp;\ub1&nbsp;2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    • 

    corecore