2,487 research outputs found
On Deciding Local Theory Extensions via E-matching
Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures
for theories of data types that commonly occur in software. This makes them
important tools for automating verification problems. A limitation frequently
encountered is that verification problems are often not fully expressible in
the theories supported natively by the solvers. Many solvers allow the
specification of application-specific theories as quantified axioms, but their
handling is incomplete outside of narrow special cases.
In this work, we show how SMT solvers can be used to obtain complete decision
procedures for local theory extensions, an important class of theories that are
decidable using finite instantiation of axioms. We present an algorithm that
uses E-matching to generate instances incrementally during the search,
significantly reducing the number of generated instances compared to eager
instantiation strategies. We have used two SMT solvers to implement this
algorithm and conducted an extensive experimental evaluation on benchmarks
derived from verification conditions for heap-manipulating programs. We believe
that our results are of interest to both the users of SMT solvers as well as
their developers
Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U
Background: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. Results: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc2155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. Conclusions: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution
Quantum Fluctuation Theorems
Recent advances in experimental techniques allow one to measure and control
systems at the level of single molecules and atoms. Here gaining information
about fluctuating thermodynamic quantities is crucial for understanding
nonequilibrium thermodynamic behavior of small systems. To achieve this aim,
stochastic thermodynamics offers a theoretical framework, and nonequilibrium
equalities such as Jarzynski equality and fluctuation theorems provide key
information about the fluctuating thermodynamic quantities. We review the
recent progress in quantum fluctuation theorems, including the studies of
Maxwell's demon which plays a crucial role in connecting thermodynamics with
information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects
and New Directions", (Springer International Publishing, 2018
The Metrological Power of Nonclassical Single-Mode States
Nonclassical states enable metrology with a precision beyond that possible
with classical physics. Both for practical applications and to understand
non-classicality as a resource, it is useful to know the maximum quantum
advantage that can be provided by a nonclassical state when it is combined with
arbitrary classical states. This advantage has been termed the "metrological
power" of a quantum state. A key open question is whether the metrological
powers for the metrology of different quantities are related, especially
metrology of force (acceleration) and phase shifts (time). Here we answer this
question for all single-mode states, both for local and distributed metrology,
by obtaining complete expressions for the metrological powers for the metrology
of essentialy any quantity (any single-mode unitary transformation), as well as
the linear networks that achieve this maximal precision. This shows that the
metrological powers for all quantities are proportional to a single property of
the state, which for pure states is the quadrature variance, maximized over all
quadratures.Comment: 5 pages main text, 2 figures, 3 pages supplemental material
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Effect of diindolylmethane supplementation on low-grade cervical cytological abnormalities: double-blind, randomised, controlled trial
This work was supported by a Cancer Research UK project grant (C8162/A4609 project costs) and a programme grant
(C8162/A10406)
- …
