479 research outputs found

    Associations of Early Systolic Blood Pressure Control and Outcome after Thrombolysis-Eligible Acute Ischemic Stroke: Results from the ENCHANTED Study

    Full text link
    Background and Purpose: In thrombolysis-eligible patients with acute ischemic stroke, there is uncertainty over the most appropriate systolic blood pressure (SBP) lowering profile that provides an optimal balance of potential benefit (functional recovery) and harm (intracranial hemorrhage). We aimed to determine relationships of SBP parameters and outcomes in thrombolyzed acute ischemic stroke patients. Methods: Post hoc analyzes of the ENCHANTED (Enhanced Control of Hypertension and Thrombolysis Stroke Study), a partial-factorial trial of thrombolysis-eligible and treated acute ischemic stroke patients with high SBP (150-180 mm Hg) assigned to low-dose (0.6 mg/kg) or standard-dose (0.9 mg/kg) alteplase and intensive (target SBP, 130-140 mm Hg) or guideline-recommended (target SBP <180 mm Hg) treatment. All patients were followed up for functional status and serious adverse events to 90 days. Logistic regression models were used to analyze 3 SBP summary measures postrandomization: attained (mean), variability (SD) in 1-24 hours, and magnitude of reduction in 1 hour. The primary outcome was a favorable shift on the modified Rankin Scale. The key safety outcome was any intracranial hemorrhage. Results: Among 4511 included participants (mean age 67 years, 38% female, 65% Asian) lower attained SBP and smaller SBP variability were associated with favorable shift on the modified Rankin Scale (per 10 mm Hg increase: odds ratio, 0.76 [95% CI, 0.71-0.82]; P<0.001 and 0.86 [95% CI, 0.76-0.98]; P=0.025) respectively, but not for magnitude of SBP reduction (0.98, [0.93-1.04]; P=0.564). Odds of intracranial hemorrhage was associated with higher attained SBP and greater SBP variability (1.18 [1.06-1.31]; P=0.002 and 1.34 [1.11-1.62]; P=0.002) but not with magnitude of SBP reduction (1.05 [0.98-1.14]; P=0.184). Conclusions: Attaining early and consistent low levels in SBP <140 mm Hg, even as low as 110 to 120 mm Hg, over 24 hours is associated with better outcomes in thrombolyzed acute ischemic stroke patients. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01422616

    Relevance of Stereotyped B-Cell Receptors in the Context of the Molecular, Cytogenetic and Clinical Features of Chronic Lymphocytic Leukemia

    Get PDF
    Highly homologous B-cell receptors, characterized by non-random combinations of immunoglobulin heavy-chain variable (IGHV) genes and heavy-chain complementarity determining region-3 (HCDR3), are expressed in a recurrent fraction of patients affected by chronic lymphocytic leukemia (CLL). We investigated the IGHV status of 1131 productive IG rearrangements from a panel of 1126 CLL patients from a multicenter Italian study group, and correlated the presence and class of HCDR3 stereotyped subsets with the major cytogenetic alterations evaluated by FISH, molecular prognostic factors, and the time to first treatment (TTFT) of patients with early stage disease (Binet A). Stereotyped HCDR3 sequences were found in 357 cases (31.7%), 231 of which (64.7%) were unmutated. In addition to the previously described subsets, 31 new putative stereotypes subsets were identified. Significant associations between different stereotyped HCDR3 sequences and molecular prognostic factors, such as CD38 and ZAP-70 expression, IGHV mutational status and genomic abnormalities were found. In particular, deletion of 17p13 was significantly represented in stereotype subset #1. Notably, subset #1 was significantly correlated with a substantially reduced TTFT compared to other CLL groups showing unmutated IGHV, ZAP-70 or CD38 positivity and unfavorable cytogenetic lesions including del(17)(p13). Moreover, subset #2 was strongly associated with deletion of 13q14, subsets #8 and #10 with trisomy 12, whereas subset #4 was characterized by the prevalent absence of the common cytogenetic abnormalities. Our data from a large and representative panel of CLL patients indicate that particular stereotyped HCDR3 sequences are associated with specific cytogenetic lesions and a distinct clinical outcome

    Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

    Get PDF
    We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information

    Multiple Advantageous Amino Acid Variants in the NAT2 Gene in Human Populations

    Get PDF
    Background: Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation. Methodology/Principal Findings: The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima's D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence. Conclusions/Significance: Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity. © 2008 Luca et al

    A proposal for a CT driven classification of left colon acute diverticulitis

    Get PDF
    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia

    Get PDF
    Purpose: To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Methods: Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg−1^{−1}) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Results: Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. Conclusion: The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue

    Interactions between Glucocorticoid Treatment and Cis-Regulatory Polymorphisms Contribute to Cellular Response Phenotypes

    Get PDF
    Glucocorticoids (GCs) mediate physiological responses to environmental stress and are commonly used as pharmaceuticals. GCs act primarily through the GC receptor (GR, a transcription factor). Despite their clear biomedical importance, little is known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26 genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1) and that influence the secretion of IL6

    TECNOB: study design of a randomized controlled trial of a multidisciplinary telecare intervention for obese patients with type-2 diabetes

    Get PDF
    Obesity is one of the most important medical and public health problems of our time: it increases the risk of many health complications such as hypertension, coronary heart disease and type 2 diabetes, needs long-lasting treatment for effective results and involves high public and private costs. Therefore, it is imperative that enduring and low-cost clinical programs for obesity and related co-morbidities are developed and evaluated. METHODS/DESIGN: TECNOB (TEChnology for OBesity) is a comprehensive two-phase stepped down program enhanced by telemedicine for the long-term treatment of obese people with type 2 diabetes seeking intervention for weight loss. Its core features are the hospital-based intensive treatment (1-month), that consists of diet therapy, physical training and psychological counseling, and the continuity of care at home using new information and communication technologies (ICT) such as internet and mobile phones. The effectiveness of the TECNOB program compared with usual care (hospital-based treatment only) will be evaluated in a randomized controlled trial (RCT) with a 12-month follow-up. The primary outcome is weight in kilograms. Secondary outcome measures are energy expenditure measured using an electronic armband, glycated hemoglobin, binge eating, self-efficacy in eating and weight control, body satisfaction, healthy habit formation, disordered eating-related behaviors and cognitions, psychopathological symptoms and weight-related quality of life. Furthermore, the study will explore what behavioral and psychological variables are predictive of treatment success among those we have considered. DISCUSSION: The TECNOB study aims to inform the evidence-based knowledge of how telemedicine may enhance the effectiveness of clinical interventions for weight loss and related type-2 diabetes, and which type of obese patients may benefit the most from such interventions. Broadly, the study aims also to have a effect on the theoretical model behind the traditional health care service, in favor of a change towards a new "health care everywhere" approach
    • 

    corecore