139 research outputs found

    Three-dimensional track reconstruction for directional Dark Matter detection

    Full text link
    Directional detection of Dark Matter is a promising search strategy. However, to perform such detection, a given set of parameters has to be retrieved from the recoiling tracks : direction, sense and position in the detector volume. In order to optimize the track reconstruction and to fully exploit the data of forthcoming directional detectors, we present a likelihood method dedicated to 3D track reconstruction. This new analysis method is applied to the MIMAC detector. It requires a full simulation of track measurements in order to compare real tracks to simulated ones. We conclude that a good spatial resolution can be achieved, i.e. sub-mm in the anode plane and cm along the drift axis. This opens the possibility to perform a fiducialization of directional detectors. The angular resolution is shown to range between 20^\circ to 80^\circ, depending on the recoil energy, which is however enough to achieve a high significance discovery of Dark Matter. On the contrary, we show that sense recognition capability of directional detectors depends strongly on the recoil energy and the drift distance, with small efficiency values (50%-70%). We suggest not to consider this information either for exclusion or discovery of Dark Matter for recoils below 100 keV and then to focus on axial directional data.Comment: 27 pages, 20 figure

    Anomaly-Mediated Supersymmetry Breaking with Axion

    Get PDF
    We construct hadronic axion models in the framework of the anomaly-mediated supersymmetry breaking scenario. If the Peccei-Quinn symmetry breaking is related to the supersymmetry breaking, mass spectrum of the minimal anomaly-mediated scenario is modified, which may solve the negative slepton mass problem in the minimal anomaly-mediated model. We find several classes of phenomenologically viable models of axion within the framework of the anomaly mediation and, in particular, we point out a new mechanism of stabilizing the axion potential. In this class of models, the Peccei-Quinn scale is related to the messenger scale. We also study phenomenological aspects of this class of models. We will see that, in some case, the lightest particle among the superpartners of the standard-model particles is stau while the lightest superparticle becomes the axino, the superpartner of the axion. With such a unique mass spectrum, conventional studies of the collider physics and cosmology for supersymmetric models should be altered.Comment: 20 pages, 5 figures, added footnotes and references for section

    Sustained VWF‐ADAMTS‐13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction

    Get PDF
    Background Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. Patients and methods Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). Results ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. Conclusion Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence

    ADAMTS13 regulation of VWF multimer distribution in severe COVID‐19

    Get PDF
    Background Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. Objectives This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. Patients and Methods Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. Results We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. Conclusions These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    SUSY breaking mediation mechanisms and (g-2)_\mu, B -> X_s \gamma, B -> X_{s} l^+ l^- and B_s -> \mu^+ \mu^-

    Full text link
    We show that there are qualitative differences in correlations among (g2)μ(g-2)_{\mu}, BXsγB\to X_s \gamma, BXsl+lB \to X_{s} l^+ l^- and Bsμ+μB_s \to \mu^+ \mu^- in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), gaugino mediation (g~\tilde{g}MSB), weakly and strongly interacting string theories, and DD brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and BXsγB\to X_s \gamma branching ratio, we find all the scenarios can accommodate the aμ(g2)μ/2a_\mu \equiv (g-2)_\mu /2 in the range of (a few tens)×1010\times 10^{-10}, and predict that the branching ratio for BXsl+lB\to X_s l^+ l^- can differ from the standard model (SM) prediction by ±20\pm 20 % but no more. On the other hand, the Bsμ+μB_s \to \mu^+ \mu^- is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (mAm_A and mt~1m_{\tilde{t}_1}), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g~\tilde{g}MSB and the noscale scenarios, one finds that B(Bsμ+μ)2×108B(B_s \to \mu^+ \mu^-) \lesssim 2 \times 10^{-8}, which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay.Comment: 40 pages, 21 figures (to appear in JHEP

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation
    corecore