221 research outputs found

    Optical Spectroscopy of IRAS 02091+6333

    Full text link
    We present a detailed spectroscopic investigation, spanning four winters, of the asymptotic giant branch (AGB) star IRAS 02091+6333. Zijlstra & Weinberger (2002) found a giant wall of dust around this star and modelled this unique phenomenon. However their work suffered from the quality of the optical investigations of the central object. Our spectroscopic investigation allowed us to define the spectral type and the interstellar foreground extinction more precisely. Accurate multi band photometry was carried out. This provides us with the possibility to derive the physical parameters of the system. The measurements presented here suggest a weak irregular photometric variability of the target, while there is no evidence of a spectroscopic variability over the last four years.Comment: 5 pages, Latex, 3 tables, 4 figures, Astron. & Astrophys. - in pres

    Multiperiodicity in the large-amplitude rapidly-rotating β\beta Ceph ei star HD 203664

    Get PDF
    We perform a seismic study of the young massive β\beta Cephei star HD 203664 with the goal to constrain its interior structure. Our study is based on a time series of 328 new Geneva 7-colour photometric data of the star spread over 496.8 days. The data confirm the frequency of the dominant mode of the star which we refine to f1=6.02885f_1=6.02885 c d1^{-1}. The mode has a large amplitude of 37 mmag in V and is unambiguously identified as a dipole mode (=2\ell=2) from its amplitude ratios and non-adiabatic computations. Besides f1f_1, we discover two additional new frequencies in the star with amplitudes above 4σ4\sigma: f2=6.82902f_2=6.82902 c d1^{-1} and f3=4.81543f_3=4.81543 c d1^{-1} or one of their daily aliases. The amplitudes of these two modes are only between 3 and 4 mmag which explains why they were not detected before. Their amplitude ratios are too uncertain for mode identification. We show that the observed oscillation spectrum of HD 203664 is compatible with standard stellar models but that we have insufficient information for asteroseismic inferences. Among the large-amplitude β\beta Cephei stars, HD 203664 stands out as the only one rotating at a significant fraction of its critical rotation velocity (40\sim 40%).Comment: 7 pages, 5 figures, accepted for publication in A&A (Astronomy & Astrophysics

    Spectroscopic survey of Kepler stars. I. HERMES/Mercator observations of A- and F-type stars

    Get PDF
    The Kepler space mission provided near-continuous and high-precision photometry of about 207 000 stars, which can be used for asteroseismology. However, for successful seismic modeling it is equally important to have accurate stellar physical parameters. Therefore, supplementary ground-based data are needed. We report the results of the analysis of high-resolution spectroscopic data of A- and F-type stars from the Kepler field, which were obtained with the HERMES spectrograph on the Mercator telescope. We determined spectral types, atmospheric parameters and chemical abundances for a sample of 117 stars. Hydrogen Balmer, Fe i, and Fe ii lines were used to derive effective temperatures, surface gravities, and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. The atmospheric parameters obtained were compared with those from the Kepler Input Catalogue (KIC), confirming that the KIC effective temperatures are underestimated for A stars. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The analysed sample comprises stars with approximately solar chemical abundances, as well as chemically peculiar stars of the Am, Ap, and λ Boo types. The distribution of the projected rotational velocity, vsin i, is typical for A and F stars and ranges from 8 to about 280 km s−1, with a mean of 134 km s−1

    Atmospheric parameters and pulsational properties for a sample of δ\delta\,Sct, γ\gamma\,Dor, and hybrid {\it Kepler} targets

    Full text link
    We report spectroscopic observations for 19 δ\delta\,Sct candidates observed by the {\it Kepler} satellite both in long and short cadence mode. For all these stars, by using spectral synthesis, we derive the effective temperature, the surface gravity and the projected rotational velocity. An equivalent spectral type classification has been also performed for all stars in the sample. These determinations are fundamental for modelling the frequency spectra that will be extracted from the {\it Kepler} data for asteroseismic inference. For all the 19 stars, we present also periodograms obtained from {\it Kepler} data. We find that all stars show peaks in both low- (γ\gamma\,Dor; g mode) and high-frequency (δ\delta\,Sct; p mode) regions. Using the amplitudes and considering 5\,c/d as a boundary frequency, we classified 3 stars as pure γ\gamma\,Dor, 4 as γ\gamma\,Dor\,-\,δ\delta\ hybrid, Sct, 5 as δ\delta\,Sct\,-\,γ\gamma\,Dor hybrid, and 6 as pure δ\delta\,Sct. The only exception is the star KIC\,05296877 which we suggest could be a binary.Comment: 11 pages, 6 figures, MNRAS main journa

    Beta Cephei stars in the ASAS-3 data. I. Long-term variations of periods and amplitudes

    Full text link
    We analysed V-filter ASAS-3 photometry of 41 known Beta Cephei-type stars. The ASAS-3 photometry was combined with the archival data, if available, to determine long-term stability of periods and amplitudes of excited modes. We detected amplitude changes in three Beta Cephei stars, BW Cru, V836 Cen, and V348 Nor. Period changes were found in KK Vel and V836 Cen. Our analysis shows that intrinsic period changes are more common among multiperiodic stars, apparently because they are caused by some kind of mode interaction. In addition, we found new modes for seven stars, and for ten others we provide new solutions or remove ambiguities in the detected frequencies. One candidate hybrid Beta Cephei/SPB star, HD133823, is discovered.Comment: 22 pages, 11 figures, accepted for publication in A&

    Lamost observations in the kepler field. I. Database of low-resolution spectra*

    Get PDF
    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical communit

    HD 51106 and HD 50747: an ellipsoidal binary and a triple system observed with CoRoT

    Full text link
    We present an analysis of the observations of HD 51106 and HD 50747 by the satellite CoRoT, obtained during its initial run, and of the spectroscopic preparatory observations. AIMS: We complete an analysis of the light curve, extract the main frequencies observed, and discuss some preliminary interpretations about the stars. Methods: We used standard Fourier transform and pre-whitening methods to extract information about the periodicities of the stars. Results: HD 51106 is an ellipsoidal binary, the light curve of which can be completely explained by the tidal deformation of the star and smaller secondary effects. HD 50747 is a triple system containing a variable star, which exhibits many modes of oscillation with periods in the range of a few hours. On the basis of this period range and the analysis of the physical parameters of the star, we conclude that HD 50747 is a Gamma-Doradus star.Comment: 7 pages, 8 figures, use (Astronomy-Astrophysics format/macro LAtex
    corecore