93 research outputs found

    Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO<sub>2</sub> exchanges

    Get PDF
    Air-sea CO2 exchanges and the partial pressure of CO2 were measured in surface water overlying 2 coral reefs: Moorea (French Polynesia, austral winter, August 1992), where coral diversity and surface cover are low, and Yonge Reef (Great Barrier Reef, austral summer, December 1993), where coral diversity and cover are comparatively higher. A procedure is proposed to estimate the potential CO2 exchange with the atmosphere by taking into account both the saturation level of oceanic seawater and the equilibration process occurring after water leaves the reef. It is shown that both sites were net sources of CO2 to the atmosphere as a result of the effect of calcification on the dynamics of the inorganic carbon system. The potential global CO2 evasion from the ocean to the atmosphere is about 4 times higher at Yonge Reef than at Moorea. It is also demonstrated that, at both sites, the major exchange of CO2 from sea to air occurs as seawater returns to chemical equilibrium after it has crossed and left the reef. The dynamics of inorganic carbon were studied using the so-called homogeneous buffer factor [beta = dln(pCO(2))/dln(DIC)] (where pCO(2) is the CO2 partial pressure in surface water and DIC is dissolved inorganic carbon), which gave estimates that approximately 80% of the change in inorganic carbon was related to photosynthesis and respiration. This approach showed that the calcification rate was proportional to the net organic production during the day and to the respiration rate at night

    Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    Get PDF
    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr-1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr-1) is considerable and represents almost a third of the atmospheric CO 2 uptake in the region

    Potential controls of isoprene in the surface ocean

    Get PDF
    Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and calculated sea-to-air ïŹ‚uxes spanning approximately 125° of latitude (80°N–45°S) over the Arctic and Atlantic Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene and the sum of photoprotective carotenoids, which is reported here for the ïŹrst time, was the most consistent across all cruises. Parameterizations based on linear regression analyses of these relationships perform well for Arctic and Atlantic data, producing a better ïŹt to observations than an existing Chl a-based parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60% and 85%, depending on the data set and algorithm used

    Factors Driving Mercury Variability in the Arctic Atmosphere and Ocean over the Past 30 Years

    Get PDF
    [1] Long-term observations at Arctic sites (Alert and Zeppelin) show large interannual variability (IAV) in atmospheric mercury (Hg), implying a strong sensitivity of Hg to environmental factors and potentially to climate change. We use the GEOS-Chem global biogeochemical Hg model to interpret these observations and identify the principal drivers of spring and summer IAV in the Arctic atmosphere and surface ocean from 1979–2008. The model has moderate skill in simulating the observed atmospheric IAV at the two sites (r ~ 0.4) and successfully reproduces a long-term shift at Alert in the timing of the spring minimum from May to April (r = 0.7). Principal component analysis indicates that much of the IAV in the model can be explained by a single climate mode with high temperatures, low sea ice fraction, low cloudiness, and shallow boundary layer. This mode drives decreased bromine-driven deposition in spring and increased ocean evasion in summer. In the Arctic surface ocean, we find that the IAV for modeled total Hg is dominated by the meltwater flux of Hg previously deposited to sea ice, which is largest in years with high solar radiation (clear skies) and cold spring air temperature. Climate change in the Arctic is projected to result in increased cloudiness and strong warming in spring, which may thus lead to decreased Hg inputs to the Arctic Ocean. The effect of climate change on Hg discharges from Arctic rivers remains a major source of uncertainty.Earth and Planetary SciencesEngineering and Applied Science

    Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt

    Get PDF
    Ensuring that global warming remains 2 emissions reduction. Additionally, 100–900 gigatons CO2 must be removed from the atmosphere by 2100 using a portfolio of CO2 removal (CDR) methods. Ocean afforestation, CDR through basin-scale seaweed farming in the open ocean, is seen as a key component of the marine portfolio. Here, we analyse the CDR potential of recent re-occurring trans-basin belts of the floating seaweed Sargassum in the (sub)tropical North Atlantic as a natural analogue for ocean afforestation. We show that two biogeochemical feedbacks, nutrient reallocation and calcification by encrusting marine life, reduce the CDR efficacy of Sargassum by 20–100%. Atmospheric CO2 influx into the surface seawater, after CO2-fixation by Sargassum, takes 2.5–18 times longer than the CO2-deficient seawater remains in contact with the atmosphere, potentially hindering CDR verification. Furthermore, we estimate that increased ocean albedo, due to floating Sargassum, could influence climate radiative forcing more than Sargassum-CDR. Our analysis shows that multifaceted Earth-system feedbacks determine the efficacy of ocean afforestation

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    Get PDF
    © 2016 Fenton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article

    High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison

    Get PDF
    The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change
    • 

    corecore