46 research outputs found

    Large orders in strong-field QED

    Get PDF
    We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarisation tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 80 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarisation tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.Comment: 26 pages, 6 figure

    The mixmaster universe: A chaotic Farey tale

    Full text link
    When gravitational fields are at their strongest, the evolution of spacetime is thought to be highly erratic. Over the past decade debate has raged over whether this evolution can be classified as chaotic. The debate has centered on the homogeneous but anisotropic mixmaster universe. A definite resolution has been lacking as the techniques used to study the mixmaster dynamics yield observer dependent answers. Here we resolve the conflict by using observer independent, fractal methods. We prove the mixmaster universe is chaotic by exposing the fractal strange repellor that characterizes the dynamics. The repellor is laid bare in both the 6-dimensional minisuperspace of the full Einstein equations, and in a 2-dimensional discretisation of the dynamics. The chaos is encoded in a special set of numbers that form the irrational Farey tree. We quantify the chaos by calculating the strange repellor's Lyapunov dimension, topological entropy and multifractal dimensions. As all of these quantities are coordinate, or gauge independent, there is no longer any ambiguity--the mixmaster universe is indeed chaotic.Comment: 45 pages, RevTeX, 19 Figures included, submitted to PR

    Thermal variational principle and gauge fields

    Get PDF
    A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well as non-Abelian: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''Gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g3g^3 studied) after a reformulation of the partition function such that it depends on only even powers of the gauge field. Also static properties (Debye screening) are reproduced this way. But because of the present need to expand the variational functional, the method falls short of its potential nonperturbative power.Comment: 36 pages, LaTeX, no figures. Updated version: new title, section on static properties and some references adde

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF

    DNA extraction techniques for DNA barcoding of minute gall-inhabiting wasps

    No full text
    DNA extraction from minute hymenopterans and their larvae is difficult and challenging because of their small size indicating a low amount of starting material. Hence, 11 DNA extraction methods were compared to determine their efficacy in isolating DNA. Success of each method was scored on a 2% agarose gel after PCR of the cox 1 mitochondrial locus. A silicamembrane- based approach was the most successful, followed by a method using a combination of incubation buffers and amethod using magnetic beads. The method using buffers was the most cost- and time effective. Using this method, larvae from Eucalyptus seed capsule galls could be assigned a role (parasitoid, gall former or inquiline) in the gall-inhabiting complex.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1755-0998nf201
    corecore