20 research outputs found

    Spanish Preanalytical Quality Monitoring Program (SEQC), an overview of 12 years' experience

    Get PDF
    Preanalytical variables, such as sample collection, handling and transport, may affect patient results. Preanalytical phase quality monitoring should be established in order to minimize laboratory errors and improve patient safety. A retrospective study (2001-2013) of the results obtained through the Spanish Society of Clinical Biochemistry and Molecular Pathology (SEQC) External quality assessment (preanalytical phase) was performed to summarize data regarding the main factors affecting preanalytical phase quality. Our aim was to compare data from 2006 to 2013 with a previously published manuscript assessing the 2001-2005 period. A significant decrease in rejection rates was observed both for blood and urine samples. For serum samples, the most frequent rejection causes in the first period were non-received samples (37.5%), hemolysis (29.3%) and clotted samples (14.4%). Conversely, in the second period, hemolysis was the main rejection cause (36.2%), followed by non-received samples (34.5%) and clotted samples (11.1%). For urine samples, the main rejection cause overall was a non-received sample (up to 86.1% of cases in the second period, and 81.6% in the first). For blood samples with anticoagulant, the number of rejections also decreased. While plasma-citrate-ESR still showed the highest percentages of rejections (0.980% vs. 1.473%, p<0.001), the lowest corresponded to whole-blood EDTA (0.296% vs. 0.381%, p<0.001). For the majority of sample types, a decrease in preanalytical errors was confirmed. Improvements in organization, implementation of standardized procedures in the preanalytical phase, and participation in a Spanish external quality assessment scheme may have notably contributed to error reduction in this phase

    Preanalytical issues related to routine and diagnostic glucose tests: Results from a survey in Spain

    Get PDF
    Introduction: Diabetes mellitus (DM) is one of the most prevalent diseases worldwide. The objective of this study was to find out under what preanalytical conditions routine and diagnostic glucose tests are performed across Spanish laboratories; and also what criteria are used for DM diagnosis. Materials and methods: An online survey was performed by the Commission on Quality Assurance in the Extra-Analytical Phase of the Spanish Society of Laboratory Medicine (SEQC-ML). Access to the questionnaire was available on the home page of the SEQC-ML website during the period April-July 2018. Data analysis was conducted with the IBM SPSS© Statistics (version 20.0) program. Results: A total of 96 valid surveys were obtained. Most laboratories were in public ownership, serving hospital and primary care patients, with high and medium workloads, and a predominance of mixed routine-urgent glucose testing. Serum tubes were the most used for routine glucose analysis (92%) and DM diagnosis (54%); followed by lithium-heparin plasma tubes (62%), intended primarily for urgent glucose testing; point-ofcare testing devices were used by 37%; and plasma tubes with a glycolysis inhibitor, mainly sodium fluoride, by 19%. Laboratories used the cut-off values and criteria recognized worldwide for DM diagnosis in adults and glucose-impaired tolerance, but diverged in terms of fasting plasma glucose and gestational DM criteria. Conclusion: Preanalytical processing of routine and DM diagnostic glucose testing in Spain does not allow a significant, non-quantified influence of glycolysis on the results to be ruled out. Possible adverse consequences include a delay in diagnosis and possible under-treatmen

    VLBI for Gravity Probe B. III. A Limit on the Proper Motion of the "Core" of the Quasar 3C 454.3

    Get PDF
    We made VLBI observations at 8.4 GHz between 1997 and 2005 to estimate the coordinates of the "core" component of the superluminal quasar, 3C 454.3, the ultimate reference point in the distant universe for the NASA/Stanford Gyroscope Relativity Mission, Gravity Probe B. These coordinates are determined relative to those of the brightness peaks of two other compact extragalactic sources, B2250+194 and B2252+172, nearby on the sky, and within a celestial reference frame (CRF), defined by a large suite of compact extragalactic radio sources, and nearly identical to the International Celestial Reference Frame 2 (ICRF2). We find that B2250+194 and B2252+172 are stationary relative to each other, and also in the CRF, to within 1-sigma upper limits of 15 and 30 micro-arcsec/yr in RA and decl., respectively. The core of 3C 454.3 appears to jitter in its position along the jet direction over ~0.2 mas, likely due to activity close to the putative supermassive black hole nearby, but on average is stationary in the CRF within 1-sigma upper limits on its proper motion of 39 micro-arcsec/yr (1.0c) and 30 micro-arcsec/yr (0.8c) in RA and decl., respectively, for the period 2002 - 2005. Our corresponding limit over the longer interval, 1998 - 2005, of more importance to GP-B, is 46 and 56 micro-arcsec/yr in RA and decl., respectively. Some of 3C 454.3's jet components show significantly superluminal motion with speeds of up to ~200 micro-arcsec/yr or 5c in the CRF. The core of 3C 454.3 thus provides for Gravity Probe B a sufficiently stable reference in the distant universe.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    Reciprocal responses in the interaction between Arabidopsis and the cell-content feeding chelicerate herbivore spider mite

    Get PDF
    Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spidermite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressedmite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores

    Key Science Goals for the Next-Generation Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide

    Very long baseline interferometry with the SKA

    Get PDF
    Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper

    The science case for simultaneous mm-wavelength receivers in radio astronomy

    Get PDF
    This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers.Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries.Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research

    Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications

    Full text link
    Oxidative stress is present in pregnancy complications. However, it is unknown if early maternal antioxidant status could influence later development of complications. The use of assisted reproduction techniques (ART) is rising due to the delay of first pregnancy and there is scarce information on its influence on oxidative balance. Objective To assess the possible relationship between maternal plasma antioxidant status in first trimester of gestation with later development of pregnancy complications, evaluating the influence of ART and nutrition. Methods Plasma from 98 healthy pregnant women was obtained at week 10, nutrition questionnaires filled and women were followed until delivery. We evaluated biomarkers of oxidative damage (carbonyls, malondialdehyde-MDA), antioxidants (thiols, reduced glutathione, phenolic compounds, catalase and superoxide dismutase activities) by spectrophotometry/fluorimetry and melatonin (ELISA). Antioxidant status score (Antiox-S) was calculated as the computation of antioxidants. Diet-antioxidants relationship was evaluated through multiple correspondence analysis. Results Melatonin and carbonyls exhibited a negative correlation. No difference in oxidative damage was found between groups, but Antiox-S was significantly lower in women who developed complications. No differences in oxidative damage or Antiox-S were found between ART and no-ART pregnancies. High consumption of foods of vegetable origin cluster with high plasma levels of phenolic compounds and with high Antiox-S. Conclusions In early normal gestation, low plasma antioxidant status, assessed through a global score, associates with later development of pregnancy complications. Larger population studies could help to determine the value of Antiox-S as predictive tool and the relevance of nutrition on maternal antioxidant statu
    corecore