137 research outputs found

    Chiral Symmetry and light resonances in hot and dense matter

    Get PDF
    We present a study of the ππ\pi\pi scattering amplitude in the σ\sigma and ρ\rho channels at finite temperature and nuclear density within a chiral unitary framework. Meson resonances are dynamically generated in our approach, which allows us to analyze the behavior of their associated scattering poles when the system is driven towards chiral symmetry restoration. Medium effects are incorporated in three ways: (a) by thermal corrections of the unitarized scattering amplitudes, (b) by finite nuclear density effects associated to a renormalization of the pion decay constant, and complementarily (c) by extending our calculation of the scalar-isoscalar channel to account for finite nuclear density and temperature effects in a microscopic many-body implementation of pion dynamics. Our results are discussed in connection with several phenomenological aspects relevant for nuclear matter and Heavy-Ion Collision experiments, such as ρ\rho mass scaling vs broadening from dilepton spectra and chiral restoration signals in the σ\sigma channel. We also elaborate on the molecular nature of ππ\pi\pi resonances.Comment: 14 pages, 14 figures. Contribution to Hard Probes 2008, Illa de A Toxa, Spain, June 8th-14th 200

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    The effect of active galactic nuclei on the cold interstellar medium in distant star-forming galaxies

    Get PDF
    In the framework of a systematic study with the ALMA interferometer of IR-selected main-sequence and starburst galaxies at z ∼ 1 − 1.7 at typical ∼1″ resolution, we report on the effects of mid-IR- and X-ray-detected active galactic nuclei (AGN) on the reservoirs and excitation of molecular gas in a sample of 55 objects. We find widespread detectable nuclear activity in ∼30% of the sample. The presence of dusty tori influences the IR spectral energy distribution of galaxies, as highlighted by the strong correlation among the AGN contribution to the total IR luminosity budget (fAGN = LIR,  AGN/LIR), its hard X-ray emission, and the Rayleigh-Jeans to mid-IR (S1.2 mm/S24 μm) observed color, with evident consequences on the ensuing empirical star formation rate estimates. Nevertheless, we find only marginal effects of the presence and strength of AGN on the carbon monoxide CO (J = 2, 4, 5, 7) or neutral carbon ([C I](3P1  −  3P0), [C I](3P2  −  3P1)) line luminosities and on the derived molecular gas excitation as gauged by line ratios and the full spectral line energy distributions. The [C I] and CO emission up to J = 5, 7 thus primarily traces the properties of the host in typical IR luminous galaxies. However, our analysis highlights the existence of a large variety of line luminosities and ratios despite the homogeneous selection. In particular, we find a sparse group of AGN-dominated sources with the highest LIR,  AGN/LIR,  SFR ratios, ≳3, that are more luminous in CO (5−4) than what is predicted by the L′CO(5-4)−LIR, SFR relation, which might be the result of the nuclear activity. For the general population, our findings translate into AGN having minimal effects on quantities such as gas and dust fractions and star formation efficiencies. If anything, we find hints of a marginal tendency of AGN hosts to be compact at far-IR wavelengths and to display 1.8 times larger dust optical depths. In general, this is consistent with a marginal impact of the nuclear activity on the gas reservoirs and star formation in average star-forming AGN hosts with LIR > 5 × 1011 L⊙, typically underrepresented in surveys of quasars and submillimeter galaxies

    CO emission in distant galaxies on and above the main sequence

    Get PDF
    We present the detection of multiple carbon monoxide CO line transitions with ALMA in a few tens of infrared-selected galaxies on and above the main sequence at z = 1.1−1.7. We reliably detected the emission of CO (5−4), CO (2−1), and CO (7−6)+[C I](3P2 − 3P1) in 50, 33, and 13 galaxies, respectively, and we complemented this information with available CO (4 − 3) and [C I](3P1 − 3P0) fluxes for part of the sample, and by modeling of the optical-to-millimeter spectral energy distribution. We retrieve a quasi-linear relation between LIR and CO (5 − 4) or CO (7 − 6) for main-sequence galaxies and starbursts, corroborating the hypothesis that these transitions can be used as star formation rate (SFR) tracers. We find the CO excitation to steadily increase as a function of the star formation efficiency, the mean intensity of the radiation field warming the dust (hUi), the surface density of SFR (ΣSFR), and, less distinctly, with the distance from the main sequence (∆MS). This adds to the tentative evidence for higher excitation of the CO+[C I] spectral line energy distribution (SLED) of starburst galaxies relative to that for main-sequence objects, where the dust opacities play a minor role in shaping the high-J CO transitions in our sample. However, the distinction between the average SLED of upper main-sequence and starburst galaxies is blurred, driven by a wide variety of intrinsic shapes. Large velocity gradient radiative transfer modeling demonstrates the existence of a highly excited component that elevates the CO SLED of high-redshift main-sequence and starbursting galaxies above the typical values observed in the disk of the Milky Way. This excited component is dense and it encloses ∼50% of the total molecular gas mass in main-sequence objects. We interpret the observed trends involving the CO excitation as to be mainly determined by a combination of large SFRs and compact sizes, as a large ΣSFR is naturally connected with enhanced dense molecular gas fractions and higher dust and gas temperatures, due to increasing ultraviolet radiation fields, cosmic ray rates, as well as dust and gas coupling. We release the full data compilation and the ancillary information to the community

    Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    Get PDF
    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure

    The ANTARES Telescope Neutrino Alert System

    Get PDF
    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.Comment: 17 pages, 9 figures submitted to Astroparticle Physic

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    corecore