11 research outputs found

    A study of rural housing improvement in Scotland

    Get PDF
    This thesis is an attempt to establish how well the rural areas of Scotland have fared in improving their housing stock. In numerical terms the housing problems in rural Scotland do not appear to be very serious, however, as a proportion of the available stock, the problems in many areas are quite acute. Poor housing conditions in rural areas are generally associated with the most densely populated areas and tend to be concentrated in the private sector where it is more difficult for local authorities to intervene. The proportionally worst housing conditions are located in the N.W, mainland and the island areas which are characterised by crofting and are also areas which may suffer from an ''income reducing" effect. The state of the housing stock also varies within Districts and this observation highlights the need for very sensitive analysis in rural areas. The proportional size of the rural housing problem in many areas serves as an indicator of the need to improve the existing stock. However, the response of local authorities to improvement has been very varied. In recent years most rural authorities have approved some local authority rehabilitation schemes, albeit that many of these have been quite small covering only 5-10 houses on average. In view of the very small proportions of subtolerable stock in the local authority sector it is likely that some progress has been made in many rural areas. Private improvement activity on the other hand has been far more limited despite the fact that rural Scotland has had a proportionally large share of private improvement grant finance. Housing Action Areas offer local authorities a very positive approach to stimulating private improvement. However, by the end of 1978 only 10 rural Districts had declared any H.A.A.s and these were generally quite small - covering about 15 houses. Of those Districts who failed to declare any H.A.A.s, a few have approved quite nigh numbers of grants in relation to their subtolerable stock. Nevertheless, generally speaking, there has been very little progress in improving private subtolerable stock in rural Scotland. Even in the areas where quite large numbers of houses are in H.A.A.s there is still a lot more work required before any sizeable impact is made. There are a number of factors which may explain this lack of real concerted effort. Many rural authorities, rightly or wrongly, feel that H.A.A. procedures are too cumbersome and therefore unsuitable, particularly in areas where substandard stock is widely scattered. Innovation in some areas is all the more difficult because of the very small size of the Environmental Health Departments who are generally responsible for private improvement grants. It is also possible that in remoter and more rural landward areas high building costs coupled with high proportions of elderly householders may act as a barrier to improvement. Within some of the remoter areas local factors such as shortages of builders and skilled draughtsmen may also make it more difficult for some owners to improve. It is recommended that several changes be made to the existing legislative framework to overcome some of the problems associated with the present grant system. First of all it is recommended that 75% grants be made available for all properties in rural areas. Secondly that grants be made more flexible and be updated at six- monthly intervals to combat inflation. Thirdly that grants be linked to the Housing Cost Indicator to take account of Regional Cost variations. In order to try and encourage authorities to use H.A.A. procedures more widely it is suggested that these procedures be shortened for small rural schemes of houses or less. In view of the lack of innovation and activity in rural areas it is clearly necessary to both find ways of promoting the existing procedures for improving housing stock more vigorously and to devise new approaches for tackling the oustanding level of inadequate housing. It is therefore recommended that in all rural areas authorities should carry out a housing condition survey to find out the true extent of the problem in their area. Having done this it is suggested that maximum efforts be made to declare H.A.A.s in the main towns and villages and that in the landward areas careful consideration be given to the serving of improvement orders on some of the more widely scattered houses. In areas where the numbers of subtolerable houses are quite small, there may be less need to use such a positive approach in which case it may be possible to set up some form of promotional campaign to inform local people of the available grants and to apply for them. Before any active campaigns can be adopted it is essential that sufficient Government finance be made available to ensure that any enthusiasm generated is not lost becuase of lack of funds. In view of the persistent public expenditure cuts it will be very difficult to claim additional funds. However local authorities should put forward their case as strongly as possible in their housing plan reminding central Government of a) their commitment to improving existing stock, and b) the obligation they have imposed on local authorities under Section 13 of the 1974 Housing (Scotland) Act, The importance for planning of improvement work derives from the land use implications of maintenance instead of clearance or dereliction and the effects this has on the local plan process and on Regional Structure Plan Objectives

    Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    No full text
    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented

    Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim

    Get PDF
    This work was supported by the Swiss National Science Foundation (grants 310030_188888, CRSII5_177163, IZRJZ3_164171 and IZLSZ3_170834) and the European Research Council (309540‑EVODRTB and 883582-ECOEVODRTB)Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Institute of Biomedicine of Valencia. Valencia, Spain.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia. Laboratório de Micobactérias. Rio de Janeiro, RJ, Brazil / Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Programa de Pós-graduação em Pesquisa Clínica e Doenças Infecciosas. Rio de Janeiro, RJ, Brazil.University of Valencia- joint Unit. I2SysBio,Valencia, Spain.University of Cape Town. Wellcome Centre for Infectious Diseases Research in Africa. Institute of Infectious Diseases and Molecular Medicine. Cape Town, South Africa.Makerere University. Department of Medical Microbiology. Kampala, Uganda.National Health Research Institutes. National Institute of Infectious Diseases and Vaccinology. Zhunan, Taiwan.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland / University of Bern. Institute for Social and Preventive Medicine. Switzerland.Victorian Infectious Diseases Reference Laboratory. Victoria, Australia.Fudan University. School of Basic Medical Science. Institutes of Biomedical Sciences and Institute of Medical Microbiology. The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health. Shanghai, China.Instituto de Investigación Sanitaria Gregorio Marañón. Hospital General Universitario Gregorio Marañón. Madrid, Spain / CIBER Enfermedades Respiratorias. Spain.Universitat de Barcelona. Hospital Clínic. Barcelona Institute for Global Health. Barcelona, Spain / Centro de Investigação em Saúde de Manhiça. Maputo, Mozambique.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland / United Republic of Tanzania. Ifakara Health Institute, Bagamoyo, Bagamoyo District Hospital. Bagamoyo, Tanzania.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland / United Republic of Tanzania. Ifakara Health Institute. Bagamoyo District Hospital. Bagamoyo, Tanzania.University of California. School of Medicine. San Francisco, USA.Fudan University. School of Basic Medical Science. Institutes of Biomedical Sciences and Institute of Medical Microbiology. The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health. Shanghai, China.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland / Papua New Guinea Institute of Medical Research. Goroka, Papua New Guinea.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Mahidol University. Faculty of Science. Department of Microbiology. Pornchai Matangkasombut Center for Microbial Genomics / National Science and Technology Development Agency. Bangkok, Thailand.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Mahidol University. Faculty of Science. Department of Microbiology. Pornchai Matangkasombut Center for Microbial Genomics / National Science and Technology Development Agency. Bangkok, Thailand.Institut Pasteur de Madagascar. Mycobacteriology Unit. Antananarivo, Madagascar.Institut Pasteur de Madagascar. Mycobacteriology Unit. Antananarivo, Madagascar.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.University of Basel. Basel, Switzerland / Swiss Tropical and Public Health Institute. Department of Medicine. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland / United Republic of Tanzania. Ifakara Health Institute. Bagamoyo District Hospital. Bagamoyo, Tanzania.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia. Laboratório de Micobactérias. Rio de Janeiro, RJ, Brazil.Université Paris-Saclay. Paris, France / Paris Diderot University. Sorbonne Paris Cité. Paris, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular Aplicada a Micobactérias. Rio de Janeiro, RJ, Brazil.Universidade do Estado do Pará. Centro de Ciências Biológicas e da Saúde. Programa de Pós-graduação em Biologia Parasitária na Amazônia. Belém, PA, Brazil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.University of Ghana. Noguchi Memorial Institute for Medical Research. Accra, Ghana.ETH Zürich. Department of Biosystems Science and Engineering. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Swiss Tropical and Public Health Institute. Department of Medical Parasitology and Infection Biology. Basel, Switzerland / University of Basel. Basel, Switzerland.Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC), causing tuberculosis (TB) in humans. L1 and L3 are endemic to the Rim of the Indian Ocean, the region that accounts for most of the world’s new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Here we analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We show that South Asia played a central role in the dispersion of these two lineages to neighboring regions. Moreover, we found that L1 exhibits signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans

    Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study

    No full text
    Background Complement is likely to have a role in refractory generalised myasthenia gravis, but no approved therapies specifically target this system. Results from a phase 2 study suggested that eculizumab, a terminal complement inhibitor, produced clinically meaningful improvements in patients with anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis. We further assessed the efficacy and safety of eculizumab in this patient population in a phase 3 trial. Methods We did a phase 3, randomised, double-blind, placebo-controlled, multicentre study (REGAIN) in 76 hospitals and specialised clinics in 17 countries across North America, Latin America, Europe, and Asia. Eligible patients were aged at least 18 years, with a Myasthenia Gravis-Activities of Daily Living (MG-ADL) score of 6 or more, Myasthenia Gravis Foundation of America (MGFA) class II-IV disease, vaccination against Neisseria meningitides, and previous treatment with at least two immunosuppressive therapies or one immunosuppressive therapy and chronic intravenous immunoglobulin or plasma exchange for 12 months without symptom control. Patients with a history of thymoma or thymic neoplasms, thymectomy within 12 months before screening, or use of intravenous immunoglobulin or plasma exchange within 4 weeks before randomisation, or rituximab within 6 months before screening, were excluded. We randomly assigned participants (1:1) to either intravenous eculizumab or intravenous matched placebo for 26 weeks. Dosing for eculizumab was 900 mg on day 1 and at weeks 1, 2, and 3; 1200 mg at week 4; and 1200 mg given every second week thereafter as maintenance dosing. Randomisation was done centrally with an interactive voice or web-response system with patients stratified to one of four groups based on MGFA disease classification. Where possible, patients were maintained on existing myasthenia gravis therapies and rescue medication was allowed at the study physician's discretion. Patients, investigators, staff, and outcome assessors were masked to treatment assignment. The primary efficacy endpoint was the change from baseline to week 26 in MG-ADL total score measured by worst-rank ANCOVA. The efficacy population set was defined as all patients randomly assigned to treatment groups who received at least one dose of study drug, had a valid baseline MG-ADL assessment, and at least one post-baseline MG-ADL assessment. The safety analyses included all randomly assigned patients who received eculizumab or placebo. This trial is registered with ClinicalTrials.gov, number NCT01997229. Findings Between April 30, 2014, and Feb 19, 2016, we randomly assigned and treated 125 patients, 62 with eculizumab and 63 with placebo. The primary analysis showed no significant difference between eculizumab and placebo (least-squares mean rank 56.6 [SEM 4.5] vs 68.3 [4.5]; rank-based treatment difference -11.7, 95% CI -24.3 to 0.96; p=0.0698). No deaths or cases of meningococcal infection occurred during the study. The most common adverse events in both groups were headache and upper respiratory tract infection (ten [16%] for both events in the eculizumab group and 12 [19%] for both in the placebo group). Myasthenia gravis exacerbations were reported by six (10%) patients in the eculizumab group and 15 (24%) in the placebo group. Six (10%) patients in the eculizumab group and 12 (19%) in the placebo group required rescue therapy. Interpretation The change in the MG-ADL score was not statistically significant between eculizumab and placebo, as measured by the worst-rank analysis. Eculizumab was well tolerated. The use of a worst-rank analytical approach proved to be an important limitation of this study since the secondary and sensitivity analyses results were inconsistent with the primary endpoint result; further research into the role of complement is needed

    Identifying Selective Host-Guest Interactions Based on Hydrogen Bond Donor-Acceptor Pattern in Functionalized Al-MIL-53 Metal-Organic Frameworks

    No full text
    We present a study analyzing the selectivity of host guest interactions in a series of functionalized Al-MIL-53-X metal organic frameworks with X = H, NH2, and NHCHO using acetone; ethanol, and water as probe molecules. While the amino group introduces additional hydrogen bond donor centers the NHCHO anchors function as donor and acceptor. The guests were chosen due to their ability to act solely as an acceptor in the case of acetone, whereas ethanol and water provide acceptor and donor qualities with a gradual decrease of the acceptor strength toward ethanol. The characterization of the host guest interactions includes a comprehensive solid-state NMR spectroscopic study based on a full assignment of H-1 and C-13 high-resolution spectra using CRAMPS decoupling schemes to enhance H-1 resolution combined with advanced 2D HETCOR (H-1-C-13, H-1-Al-27, and H-1-N-14) spectra at high magnetic fields. In spite of a pronounced dynamical disorder of the guests, we could identify a preferred binding of the acetone via a NH center dot center dot center dot OC hydrogen bond for the NH2 and the NHCHO anchor groups by analyzing trends in the C-13 isotropic chemical shifts. At the same time H-1-H-1 through space connectivities reveal a close vicinity of the acetone methyl groups to the benzene rings of the linkers. In contrast, for ethanol and water, the interaction with the anchor groups is too weak to compete with the thermal disorder at room temperature

    Patterns of Recurrence After Resection of Pancreatic Ductal Adenocarcinoma: A Secondary Analysis of the ESPAC-4 Randomized Adjuvant Chemotherapy Trial

    No full text
    Importance: The patterns of disease recurrence after resection of pancreatic ductal adenocarcinoma with adjuvant chemotherapy remain unclear. Objective: To define patterns of recurrence after adjuvant chemotherapy and the association with survival. Design, Setting, and Participants: Prospectively collected data from the phase 3 European Study Group for Pancreatic Cancer 4 adjuvant clinical trial, an international multicenter study. The study included 730 patients who had resection and adjuvant chemotherapy for pancreatic cancer. Data were analyzed between July 2017 and May 2019. Interventions: Randomization to adjuvant gemcitabine or gemcitabine plus capecitabine. Main Outcomes and Measures: Overall survival, recurrence, and sites of recurrence. Results: Of the 730 patients, median age was 65 years (range 37-81 years), 414 were men (57%), and 316 were women (43%). The median follow-up time from randomization was 43.2 months (95% CI, 39.7-45.5 months), with overall survival from time of surgery of 27.9 months (95% CI, 24.8-29.9 months) with gemcitabine and 30.2 months (95% CI, 25.8-33.5 months) with the combination (HR, 0.81; 95% CI, 0.68-0.98; P = .03). The 5-year survival estimates were 17.1% (95% CI, 11.6%-23.5%) and 28.0% (22.0%-34.3%), respectively. Recurrence occurred in 479 patients (65.6%); another 78 patients (10.7%) died without recurrence. Local recurrence occurred at a median of 11.63 months (95% CI, 10.05-12.19 months), significantly different from those with distant recurrence with a median of 9.49 months (95% CI, 8.44-10.71 months) (HR, 1.21; 95% CI, 1.01-1.45; P = .04). Following recurrence, the median survival was 9.36 months (95% CI, 8.08-10.48 months) for local recurrence and 8.94 months (95% CI, 7.82-11.17 months) with distant recurrence (HR, 0.89; 95% CI, 0.73-1.09; P = .27). The median overall survival of patients with distant-only recurrence (23.03 months; 95% CI, 19.55-25.85 months) or local with distant recurrence (23.82 months; 95% CI, 17.48-28.32 months) was not significantly different from those with only local recurrence (24.83 months; 95% CI, 22.96-27.63 months) (P = .85 and P = .35, respectively). Gemcitabine plus capecitabine had a 21% reduction of death following recurrence compared with monotherapy (HR, 0.79; 95% CI, 0.64-0.98; P = .03). Conclusions and Relevance: There were no significant differences between the time to recurrence and subsequent and overall survival between local and distant recurrence. Pancreatic cancer behaves as a systemic disease requiring effective systemic therapy after resection. Trial Registration: Clinicaltrials.gov Identifier: NCT00058201, EudraCT 2007-004299-38, and ISRCTN 96397434

    Another history of museums: from the discourse to the museum-piece

    No full text
    The history of museums could get inspired on the procedures of material studies and of Anthropology in order to take a new stand and move away from the institutional approach and consider the approach of objects traditionally labelled as museum objects. The socalled “museum pieces” are supposed to have a number of characteristics, particularly some great historical and artistic qualities, sometimes an heritage quality, but above all the ability to make “friends” around the community or around the world. In all these respects, it is proposed here a number of research procedures that may supplement or enrich the directions usually assigned to the history of institutions
    corecore