1,378 research outputs found

    Novel Exercise Hardware Requirements, Development, and Selection Process for Long-Duration Space Flight

    Get PDF
    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat the physical toll that exploration space flight may take on the crew, NASAs Human Research Program is charged with developing exercise protocols and hardware to maintain astronaut health and fitness during long-term missions. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. As NASA aims toward space travel outside of low-earth orbit (LEO), the constraints placed upon exercise equipment onboard the vehicle increase. Proposed vehicle architectures for transit to and from locations outside of LEO call for limits to equipment volume, mass, and power consumption. While NASA has made great strides in providing for the physical welfare of the crew, the equipment currently used onboard ISS is too large, too massive, and too power hungry to consider for long-duration flight. The goal of the Advanced Exercise Concepts (AEC) project is to maintain the resistive and aerobic capabilities of the current, ISS suite of exercise equipment, while making reductions in size, mass, and power consumption in order to make the equipment suitable for long-duration missions

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Urocortin-1 within the Centrally-Projecting Edinger-Westphal Nucleus Is Critical for Ethanol Preference

    Get PDF
    Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward

    Cryptic Diversity in Indo-Pacific Coral-Reef Fishes Revealed by DNA-Barcoding Provides New Support to the Centre-of-Overlap Hypothesis

    Get PDF
    Diversity in coral reef fishes is not evenly distributed and tends to accumulate in the Indo-Malay-Philippines Archipelago (IMPA). The comprehension of the mechanisms that initiated this pattern is in its infancy despite its importance for the conservation of coral reefs. Considering the IMPA either as an area of overlap or a cradle of marine biodiversity, the hypotheses proposed to account for this pattern rely on extant knowledge about taxonomy and species range distribution. The recent large-scale use of standard molecular data (DNA barcoding), however, has revealed the importance of taking into account cryptic diversity when assessing tropical biodiversity. We DNA barcoded 2276 specimens belonging to 668 coral reef fish species through a collaborative effort conducted concomitantly in both Indian and Pacific oceans to appraise the importance of cryptic diversity in species with an Indo-Pacific distribution range. Of the 141 species sampled on each side of the IMPA, 62 presented no spatial structure whereas 67 exhibited divergent lineages on each side of the IMPA with K2P distances ranging between 1% and 12%, and 12 presented several lineages with K2P distances ranging between 3% and 22%. Thus, from this initial pool of 141 nominal species with Indo-Pacific distribution, 79 dissolved into 165 biological units among which 162 were found in a single ocean. This result is consistent with the view that the IMPA accumulates diversity as a consequence of its geological history, its location on the junction between the two main tropical oceans and the presence of a land bridge during glacial times in the IMPA that fostered allopatric divergence and secondary contacts between the Indian and Pacific oceans
    corecore