
Funk et al. Journal of Biomedical Semantics  (2016) 7:52 
DOI 10.1186/s13326-016-0096-7

RESEARCH Open Access

Gene Ontology synonym generation rules
lead to increased performance in biomedical
concept recognition
Christopher S. Funk1*, K. Bretonnel Cohen1, Lawrence E. Hunter1 and Karin M. Verspoor2,3

Abstract

Background: Gene Ontology (GO) terms represent the standard for annotation and representation of molecular
functions, biological processes and cellular compartments, but a large gap exists between the way concepts are
represented in the ontology and how they are expressed in natural language text. The construction of highly specific
GO terms is formulaic, consisting of parts and pieces from more simple terms.

Results: We present two different types of manually generated rules to help capture the variation of how GO terms
can appear in natural language text. The first set of rules takes into account the compositional nature of GO and
recursively decomposes the terms into their smallest constituent parts. The second set of rules generates derivational
variations of these smaller terms and compositionally combines all generated variants to form the original term. By
applying both types of rules, new synonyms are generated for two-thirds of all GO terms and an increase in F-measure
performance for recognition of GO on the CRAFT corpus from 0.498 to 0.636 is observed. Additionally, we evaluated
the combination of both types of rules over one million full text documents from Elsevier; manual validation and error
analysis show we are able to recognize GO concepts with reasonable accuracy (88 %) based on random sampling of
annotations.

Conclusions: In this work we present a set of simple synonym generation rules that utilize the highly compositional
and formulaic nature of the Gene Ontology concepts. We illustrate how the generated synonyms aid in improving
recognition of GO concepts on two different biomedical corpora. We discuss other applications of our rules for GO
ontology quality assurance, explore the issue of overgeneration, and provide examples of how similar methodologies
could be applied to other biomedical terminologies. Additionally, we provide all generated synonyms for use by the
text-mining community.
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Background
The Gene Ontology (GO) represents the standard by
which we refer to functions and processes that genes/gene
products participate in. Due to its importance in biology
and the exponential growth in the biomedical literature
over the past years, there has been much effort in utiliz-
ing GO for text mining tasks [1, 2]. Performance on these
recognition tasks is lacking; it has been previously seen
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that there is a large gap between the way concepts are rep-
resented in the ontology and the many different ways they
are expressed in natural text [3–5].
There are twomain applications of biomedical literature

mining where improved recognition of Gene Ontology
can improve downstream performance. 1) It is well known
that manual curation can no longer keep up with the
annotation of gene and protein function [6]. Automatic
annotation is not our direct goal, but utilizing automatic
methods to highlight functions could provide input to
curators to help speed up manual curation. The more
accurate automated methods become, the more useful
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their application becomes inmanual curation. 2) Themin-
ing of GO concepts from large collections of biomedical
literature has been shown to be useful for biomedical dis-
covery, for example, pharmacogenomic gene prediction
[7] and protein function prediction [8, 9]. Providing these
discovery algorithms with not only cleaner, but more data,
could increase the ability their accuracy of prediction and
generalizability.

Identification of gene ontology concepts in unstructured
text
There are two main methods of identifying GO con-
cepts within unstructured text, dictionary lookup and
pattern/similarity based measures. Unfortunately, there
have been very few evaluations assessing the ability to
recognize and normalize Gene Ontology concepts from
the literature; this is mostly due to lack of gold-standard
annotations.
There are sub-tasks within the BioCreative I and IV

[2, 10] community challenges that involve similar, but
more involved, tasks to GO term recognition – relat-
ing relevant GO concepts given protein-document pairs.
While the methods utilized for this specific tasks are
beyond the scope of this work, some systems utilize these
corpora to evaluate their ability to identify GO concepts
on unstructured text. Ruch et al. [11] implement pat-
tern based matching on a 5 token window and a vector
space indexing model. Their GO pattern based matching
reports highest average precision of 0.07 while their index-
ing model reports highest precision at recall = 0 (0.15) on
the BioCreative I corpus. Gaudan et al. [12] utilize proxim-
ity, specificity, and similarity to calculate the score of GO
term t appearing in zone z. They report average precision
and recall of 0.34 for the terms at rank 1 on the BioCreative
I corpus. A more recent system, GOCat [13], combines
semantic similarity and a machine learning based k-NN
algorithm to return the most similar k GO concepts in
some text. On the Biocreative I corpus, GOCat reports
0.56 precision at recall 0.20 (F-measure = 0.29). A pitfall
of these types of algorithms is they do not identify the
exact span of text that matched the GO concept. They
only specify that the concept could be present within this
sentence or document.
Dictionary based methods identify the exact span of

text that corresponds to the GO concept. Previous work
evaluated concept recognition systems utilizing the Col-
orado Richly Annotated Full Text Corpus (CRAFT). Funk
et al. [14] evaluated three prominent dictionary-based sys-
tems (MetaMap, NCBO Annotator, and ConceptMapper)
and found Cellular Component was able to be recog-
nized the best (F-measure 0.77). The more complex terms
from Biological Process (F-measure 0.42) and Molecular
Function (F-measure 0.14) were much more difficult to
recognize in text. Campos et al. present a framework

called Neji and compare it against Whatizit on the
CRAFT corpus [15]; they find similar best performance
(Cellular Component 0.70, Biological Process/Molecular
Function 0.35). Other work explored the impact of case
sensitivity and information gain on concepts recogni-
tion and report performance in the same range as what
has previously been published (Cellular Component 0.78,
Biological Process/Molecular Function 0.40) [16]. Since
all previously publishedmethods utilized dictionary based
systems and report similar performance, there is a need
for more sophisticated methods of utilizing the informa-
tion contained within the Gene Ontology. For further
progress to be made, the gap between concept representa-
tion and their expression in literature needs to be reduced,
which serves as major motivation for the work presented
in this manuscript.
There have been efforts to increase the ability to recog-

nize biomedical concepts through enumerating variability
in terms through generation, rewriting, and suppression
rules. Tsuruoka et al. [17] generate spelling and punctu-
ation variants based upon probabilistic generation rules
learned from 84,000 MEDLINE abstracts. These types
of rules help to capture the surface variability within
concepts, such as “type I”, “Type I”, “type i”, etc. Hettne
et al. [18] implement rewriting and suppression rules for
to reduce the variability in UMLS concepts. For identifica-
tion of terms, they remove leading parentheses/brackets
and filter out some semantic types. Additionally, the sup-
press certain terms that should not be matched on, i.e.
only EC numbers or those that contain dosages. While the
rules presented here do not specifically utilize the meth-
ods described above, the same underlying principles are
incorporated.

Compositionality of the gene ontology
The structure of concepts from the Gene Ontology has
been noted by many to be compositional [19–21]. A term
such as “GO:1900122 - positive regulation of receptor
binding” contains another concept “GO:0005102 - recep-
tor binding”; not only do the strings overlap, but the terms
are also connected by relationships within the ontology.
Ogren et al. explore more in detail terms as proper sub-
string of other terms [19]. Additionally, previous work
examined the compositionality of the GO and employed
finite state automata (FSA) to represent sets of GO terms
[20]. An abstracted FSA described in that work can be
seen in Fig. 1. This example shows how terms can be
decomposed into smaller parts and how many different
terms share similar compositional structure. While using
regular expressions are useful for simple terms, there are
more complex concepts that require more sophisticated
decomposition.
To facilitate generation of meaning (cross-product def-

initions) and consistency within the ontology, a system
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Fig. 1 Finite state automata representing activation, proliferation, and differentiation GO terms. An abstracted FSA adapted from a figure in Ogren
et al. [20] that shows how a particular term can be decomposed into its smaller components; where “cell type” can be any specific type of cell

called Obol [22] was developed. This work involved
analyzing the structure of terms through the creation
of grammars to decompose and understand the for-
mal language underlying the GO. An example grammar
describing the positive regulation of a molecular function
term follows: process(P that positively_regulates(F)) ⇒
[positive],regulation(P),[of ],molecular_function(F). These
grammars serve as templates for the decompositional
rules utilized in this work. Recently, GO has been moving
away from pre-computed term, towards post-computed
on-the-fly creation of terms for annotations using cross-
products [23]. Additionally, TermGenie [24] was devel-
oped, using a pattern-based approach, to automatically
generate new terms and place them appropriately within
the Gene Ontology. This work dealt with the analysis and
generation of new terms for curation, but no work has
been focused on synonym generation.
There has been previous work using the compositional

nature and common syntactic patterns within the Gene
Ontology itself to automatically generate lexical elemen-
tary synonym sets [25]. This method generates a total
of 921 sets of synonyms with a majority being generated
from 1–3 terms; 80 % of the sets refer to orthographic
{synthase, sythetase}, chemical products {gallate, gallic
acid}, or Latin inflection {flagella, flagellum}. We believe
this method is complementary to what we present here.
In this work, we manually created these sets, along with
many more, through analysis of Gene Ontology annota-
tions in unstructured text. Additionally we go beyond and
incorporate derivational variants, i.e. flagella⇒flagellar,
which have been shown to be very useful for capturing
the natural language text of concepts. We were currently

unable to find them publicly available, but if we should, the
synonym sets by Hamon et al. could be seamlessly inte-
grated within the synonym generation rules we present
here.
Other work takes advantage of the structure of the Gene

Ontology and relationships between GO terms to show
that these properties can aid in the creation of lexical
semantic relationships for use in natural language pro-
cessing applications [26]. Besides compositionality, previ-
ous work tries to identify GO terms that express similar
semantics that use distinct linguistic conventions [27].
They find, in general, that concepts from the Gene Ontol-
ogy are very consistent in their representation (there are
some exceptions but these are quality issues that the
consortium would like to avoid or fix). The consistency
of term representation along with the underlying com-
positional structure suggests the effective generation of
synonyms for many terms using only a small number of
rules.

Current synonyms are not sufficient for text-mining
The identification of Gene Ontology terms is more dif-
ficult than many other types of named entities such as
genes, proteins, or species mainly due to the length [14]
and complexity of the concepts. To help illustrate this, we
examined all variations of the GO term “GO:0006900 -
membrane budding” within the CRAFT corpus. The entry
for this concept in the ontology file is seen below. Like
most other terms, the concept name appears as a noun
and the entry contains a few synonyms (Table 1).
There were eight varying expressions of “membrane

budding” in all of CRAFT, five of which are contained

Table 1 Example ontology entry for the concept “membrane budding”

id: GO:0006900

name: membrane budding

namespace: biological_process

def: "The evagination of a membrane resulting in formation of a vesicle."

synonym: "membrane evagination" EXACT

synonym: "nonselective vesicle assembly" RELATED

synonym: "vesicle biosynthesis" EXACT

synonym: "vesicle formation" EXACT

is_a: GO:0016044 ! membrane organization and biosynthesis

relationship: part_of GO:0016192 ! vesicle-mediated transport
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within a single article about expression and localization
of Annexin A7 (PMID:12925238). In Table 2 we list the
annotations along with sentential context. We find that
using exact matching and context from the ontology file,
the first two examples can be identified, but the others
cannot. This one example illustrates that a rather simple
term can be expressed in natural language text in many
different ways, that convey identical semantic meaning.

Objectives of this work
We hypothesize that due to the highly formalized and
compositional nature of the Gene Ontology [19], a small
number of generation rules can help to automatically gen-
erate synonyms for current and novel GO concepts, dif-
ferentiated from GO synonyms as “generated synonyms”.
Additionally, we hypothesize that the variation captured
in these generated synonyms will allow for better recog-
nition of Gene Ontology concepts from the biomedical
literature. We are aware that our method might overgen-
erate like Blaschke et al. [28], but we also hypothesize that
those generated synonyms probably will not be found in
the biomedical literature, and therefore, will not hinder
performance.
In this work, we present 18 manually created rules

to facilitate generation of synonyms from the entirety
of the Gene Ontology. We evaluate these automatically
generated synonyms both intrinsically, on a gold stan-
dard corpus, and extrinsically, through manual valida-
tion of annotations from a large literature collection.
We show that these automatically generated synonyms
increase recognition of GO concepts over any published
results and illustrate the accuracy and impact the gen-
erated synonyms have at a large scale. Additionally, we
show that the principles behind the rules generalizes to
novel GO concepts. It is the goal to generate and release
these generated synonyms for the larger biomedical nat-
ural language processing community. Currently, we do
not suggest that all generated synonyms be considered
for addition to GO, but filtering and classification meth-
ods could be employed to suggest the most accurate
generated terms as synonyms. Not only does this work
apply to the two tasks mentioned above, but it also adds
the ability to generate synonyms for newly created GO
concepts.

Table 2 Examples of the “membrane budding” concept within a
single document

Lipid rafts play a key role inmembrane budding. . .

Having excluded a direct role in vesicle formation. . .

. . . involvement of annexin A7 in budding of vesicles

. . . Ca2+-mediated vesiculation process was not impaired

Red blood cells which lack the ability to vesiculate cause. . .

Methods
Methodological overview
The main idea behind our method is made up of three
different steps:

1. Recursively decompose each Gene Ontology term to
its constituent terms

2. Generate derivational variants for each of these
constituent terms

3. Recombine all forms of all constituent terms (the
constituent term itself, the generated derivational
variants, and current synonyms of constituent term
in the Gene Ontology) using differing syntactic and
lexical rules

This methodology is made possible due to the highly
formalized and compositional nature of the Gene
Ontology.
Returning to the “membrane budding” example pre-

sented above (Table 2), we illustrate the methodology
behind creation and application of our rules. By analyz-
ing the different ways “membrane budding” is expressed
in CRAFT, we find that a majority of the annotations
are phrased around the end product, the vesicle. To help
recognize these (currently) un-recognizable annotations
there are two steps that should be done: 1) reorder words
and change the syntax (“budding of vesicles”) and 2) gen-
erate derivational variants of “vesicle” (“vesiculation” and
“vesiculate”). We developed two classes of rules that inter-
act seamlessly to generate these types of synonym varia-
tion. The first we designate “recursive syntactic” and the
second “derivational variant”, which are discussed imme-
diately below. Each of our rules was manually created
through the analysis of the differences between concept
annotations within the gold standard CRAFT corpus and
the Gene Ontology itself, along with discussions with an
ontologist and biologist about how they most frequently
express certain concepts. A more in-depth example is
presented within the description of the individual rules.

Recursive syntactic rules
The recursive syntactic rules perform step 1 & 3 outlined
in the “Methodological overview” section. The recursive
rules, step 1, were developed through studying the gram-
mars used in Obol [22], utilizing the dependency parse of
the Gene Ontology terms from ClearNLP [29], and exam-
ining common formalizations within Gene Ontology con-
cepts. These represent semi-frozen expressions as anchors
to identify the constituent terms. The lexical and syntac-
tic recombination rules, step 3, were derived by studying
the transformations required to get from Gene Ontology
term to the gold standard annotations that appear in
CRAFT. Additionally, there were many discussions with
biologists on the variation in terminology in which they
could express the same concept.
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We identified 11 cases when terms can be broken down
into smaller composite terms; we acknowledge that there
are more, but choose to focus on the ones that affected the
majority of concepts. Over 55 % (14,221 out of 25,471) of
the Gene Ontology concepts can be decomposed using at
least one of these 11 different cases. Through our analy-
sis we have developed an ordering for rule application, to
generate the most possible synonyms. The 11 cases, the
order, and examples applied are presented in Table 3; for
full enumeration and further explanation of all rules see
Additional file 1.

Derivational variant rules
Once the original term is broken down to its constituent
components, step 1, through the recursive syntactic rules
presented above, we can apply derivational variant gen-
eration rules, step 2. The goal of this step is to generate
synonyms that reflect the broader range of variability
that occurs in natural language text expression of Gene
Ontology concepts.We incorporate two open source tools
to generate the derivational variants, WordNet [30] and
Lexical Variant Generator [31]. There are a total of seven
different specific cases when we apply these derivational
generation rules (Table 4). These rules were developed

by examining the transformations needed to create the
text spans annotated in the CRAFT gold standard from
the information contained within the GO. For example,
for single word terms we would generate both verb and
adjective forms of the noun concept, if they exist, which
would then both be incorporated compositionally within
the more complex concepts. For additional explanation
and full enumeration of the rules see Additional file 1.

Example of rules applied
In Fig. 2 we walk through all three steps of the syn-
onym generation process with the concept “GO:00507678
- negative regulation of neurogenesis”.

1. It is decomposed into 2 constituent terms: 1)
“negative regulation of” and 2) another GO concept
– “GO:0022008 - neurogenesis”. Since it cannot be
decomposed any further, we begin generating
synonyms for both of these composite parts.

2. Derivational variants for the term “neurogenesis” are
generated utilizing the single word term rule. There
are three different forms of “neurogenesis”, the term
itself, the adjective form exists in WordNet [30] or
can be generated through LVG (lexical variant

Table 3 Recursive syntactic rules order, constituent terms, and example generated synonyms

Order Rule GO term Constituent terms Generated synonyms

1 “via” or “involved in”
terms

GO:0002679 - respiratory burst
involved in defense response

“respiratory burst”, “defense
response”

“defense response associated respiratory
burst”

2 “regulation of” terms GO:0030513 - positive regulation
of BMP signaling pathway

“BMP signaling pathway” ‘positive regulation of BMP receptor
pathway”, “up-regulation of BMP receptor
signaling”

3 “response to” terms GO:0034263 - autophagy in
response to ER overload

“autophagy”, “ER overload” “ER overload responsible for autophagy”,
“autophagy response to ER overload”

4 “signaling” terms GO:0035329 - hippo signaling “hippo” “hippo signaling pathway”, “signaling of
hippo”

5 “biosynthetic process”
terms

GO:0042095 - interferon-gamma
biosynthetic process

“interferon-gama” “interferon-gamma biosynthesis”,
“production of interferon-gamma”

6 “metabolic process”
terms

GO:0042120 - alginic acid
metabolic process

“alginic acid” “metabolism of alginic acid”, “alginic acid
metabolism”

7 “catabolic process”
terms

GO:0042190 - vanillin catabolic
process

“vanillin” “vanillin degradation”, “breakdown of
vanillin”

8 “binding” terms GO:0042314 - bacteriochlorophyll
binding

“bacteriochlorophyll” “binding of bacteriochlorophyll”, “bacteri-
ochlorophyll bound”

9 “transport” terms GO:0042876 - aldarate transmem-
brane transporter activity

“aldarate”, “transmembrane” “transportation of aldarate across the
membrane”, “transporting aldarate
transmembrane”

10 “differentiation” terms GO:0043158 - heterocyst differenti-
ation

“heterocyst” “heterocyst cell differentiation”, “differenti-
ation into heterocyst”

11 “activity” terms GO:0043492 - ATPase activity, cou-
pled to movement of substances

“ATPase”, “coupled to move-
ment of substances”

“ATPase, coupled to movement of
substances”, “coupled to movement of
substances activity of ATPase”

While these examples show only one rule applied at once, each constituent term identified recursively goes through each rule in the order outlined to determine the most
basic constituent terms, which will get derivational variations (discussed in next paragraph) and then combinatorially re-combined into generated synonyms of the original
term
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Table 4 Individual derivational variant generation rules

Order Rule Rule defined GO terms Example derivations

1 Single word terms 1 {NN} ⇒ {JJ} 1 GO:0043066 - negative regu-
lation of apoptosis

1 “apoptotic down regulation”

2 {NN} ⇒ {VB} 2 GO:0023040 - signaling via
ionic flux

2 “signaled via ionic flux”

2 Double word terms 1 {NN_1 NN_2} ⇒ {NN_1},
{VB_2 NN_1}, {JJ_1 NN_2},
{NN_1 JJ_2}

1 GO:0048666 - neuron devel-
opment

1 “neural development”, “neurotic
development”, “neuronal develop-
ment”

2 {JJ_1 NN_2} ⇒ {JJ_1}, {JJ_1
JJ_2}

2 GO:0005576 - chromosomal
region

“chromosomal”, “chromosome
region”

3 Triple word terms 1 {NN_1 NN_2 NN_3}⇒ {NN_1
NN_3}, {NN_3 NN_1}, {VB_3}

1 GO:0052386 - cell wall thick-
ening

1 “thickened wall”, “cell
thickening”, “thickens cell wall”

4 “cell part” terms Introduce and re-order cell part
terms

GO:0035452 - extrinsic com-
ponent of plastid membrane

“peripheral to plastid membrane”,
“extrinsic to plastid membrane”

5 “sensory
perception” terms

Introduce variants of the sense
- “sensory perception of {NN}”

GO:0050909 - sensory percep-
tion of taste

“gustory”, “gustation”

6 “transcription,
X-dependent”
terms

Introduce variants of “transcrip-
tion”

GO:0006410 - transcription,
RNA-templated

“RNA-dependent reverse tran-
scription”, “RNA-dependent
RT”

7 “X strand annealing
activity” terms

Introduce variants of “anneal-
ing”

GO:0033592 - RNA strand
annealing activity

“RNA hybridization”, “hybridize”

The seven patterns that we generate derivational variants are presented along with examples of each. While these are presented individually, all derivational and recursive
syntactic (presented in Table 3) interact at each step. The examples provided are single GO terms, but any of the constituent terms produced through the above steps will go
through all derivational rules, if possible. The bolded words in the GO Term and Synonyms generated column represent the impact of the rule. The Penn Treebank
part-of-speech (POS) tags are utilized below: NN = noun, VB = verb, JJ = adjective. All varying forms were converted to the basic POS tag, e.g. NNS = plural noun and were
converted to NN

generator) [31], and the current synonyms found
within the Gene Ontology.

3. There are no derivational variants of “negative
regulation of”, but there are syntactic and lexical
synonymous expressions enumerated in the
“regulation of” terms rule. To generate synonyms of
the original concept, the three forms of
“neurogenesis” are combinatorially combined with
the 12 different synonymous expressions of “negative
regulation of” to form 36 synonyms for the original
term; the Gene Ontology currently only has 4
synonyms for this concept.

ConceptMapper
ConceptMapper (CM) is an open source highly con-
figurable dictionary lookup tool created for identifying
named entities in text. CM is part of the Apache UIMA
Sandbox [32] and is available at http://uima.apache.org/d/
uima-addons-current/ConceptMapper. Version 2.3.1 was
used for these experiments.
The first step in the CM pipeline is to convert the GO

ontologies to the required XML dictionary format. The
document text is then provided and tokenized. All tokens
within a span, in this case a sentence, are looked up
in the dictionary using a configurable lookup algorithm.
The lookup algorithm has the ability to reorder words,

insert gaps, ignore words, identify all or only longest
match, etc. For each branch of GO we used the highest
performing parameter combination previously identified
[14]. Additional file 2 provides a summation of the dif-
ferent type of ConceptMapper parameters and shows the
exact parameter combinations used for recognition of
each sub-branch of the Gene Ontology.

Concept recognition pipeline and baselines
The baseline for GO recognition was established in pre-
vious work [14] through parameter analysis of three dif-
ferent concept recognition systems. The top performing
system, ConceptMapper (CM), is used for the following
test because it produced the highest F-measures on 7 out
of 8 ontologies in the CRAFT corpus. CM takes an obo file
and converts it to an xml dictionary, which is used to rec-
ognize concepts in free text. In analyzing the results there
are two different baselines that were provided. Both base-
lines use the same ConceptMapper parameters settings
but differ in the way the dictionary was created:

• B1, a CM dictionary containing only information
within the ontology obo file.

• B2, a CM dictionary that deletes the word “activity”
from molecular function terms containing that word
(for example, for term “GO:0016787 - hydrolase

http://uima.apache.org/d/uima-addons-current/ConceptMapper
http://uima.apache.org/d/uima-addons-current/ConceptMapper
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Fig. 2 Three steps of synonym generation applied. A single GO concept broken down into its composite parts (bolded and underlined), synonyms
generated for each part (text underneath the part), then combination of all synonyms from all composite parts to form complete synonym of the
original concept

activity” a synonym of “hydrolase” is added). This
addresses a known property of molecular function
terms formalization that aims to separate of the
protein and the function of the protein.

For the intrinsic evaluation pipeline on the CRAFT cor-
pus, we use the version of GO used to annotate CRAFT
from November 2007. We are aware of the great number
of changes made, but this was purposefully done to keep
the concepts available to the dictionary the same that were
available to the annotators when they marked up the gold
standard. To show that the rules created are able to gen-
eralize and apply to the many new concepts added to the
Gene Ontology added since 2007, for the extrinsic evalu-
ation on large collection we use an updated version of the
GO from 9/25/2015.

Evaluation corpora
There are two different corpora utilized in evaluation of
our generated synonyms.

CRAFT corpus
The gold standard used is the Colorado Richly Annotated
Full-Text (CRAFT) Corpus [33, 34] version 1.0 released
October 19th, 2012. The full CRAFT corpus consists of 97
completely manually annotated biomedical journal arti-
cles, while the “public release” set, which consists of 67
documents, was used for this evaluation. CRAFT includes

over 100,000 concept annotations from eight different
biomedical ontologies. Even though the collection is small
relative to the size of PubMed, there is no other cor-
pus that has text-level annotations of Gene Ontology
concepts.

Large literature collection
To test generalization and for further analysis of the
impact our concept recognition can have, we utilized
a large collection of one million full-text articles from
Elsevier. This is a collection of full-text documents from
a wide variety of biomedical Elsevier journals that was
delivered to the University of Colorado for internal
analysis.

Evaluation of generated synonyms
To evaluate the synonyms given we use the same pipelines
described in Funk et al. [14]. Synonyms are generated
by each method and then only those that are unique
(both within the generated synonyms and GO itself )
are inserted into a temporary obo file. The temporary
obo file is then used to create an xml dictionary used
by ConceptMapper [35] for concept recognition. The
CRAFT corpus is used as the gold standard and preci-
sion, recall, and macro-averaged F-measure are reported
for each branch of the GO.We provide counts of concepts
along with changes from the evaluation on the large scale
corpus.
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Results and discussion
Application of gene ontology synonym rules
To explore the impact that our rules had on the recogni-
tion of concepts from the biomedical literature, we applied
our synonym generation rules to two different version of
the Gene Ontology and compared the concepts identified
before/after application on two different biomedical cor-
pora. For evaluation on the CRAFT corpus, we applied
our rules to the CRAFT annotated version of GO con-
taining 25,471 concepts; our 18 rules generated 291,031
synonyms for 16,800 concepts (66 % of all concepts).
Because the CRAFT version is from 2007, we applied
our methodology to a more recent version of GO from
September 2015. On this recent version, our rules gener-
ated ∼1.5 million unique, but unconfirmed, synonyms for
66 % of all GO concepts (27,610 out of 41,852). Only a few
rules, 18, can have wide applicability to a majority of the
concepts in the Gene Ontology due to the concepts being
highly formalized and exhibiting a compositional nature.
While our rules appear to overgenerate, the main focus of
this work is to improve recognition of GO concepts from
the biomedical literature; we expect overgeneration to not
decrease performance because a majority of the generated
synonyms will not be seen in the biomedical literature.
An easy method of reducing the overgeneration would
be to only include the generated synonyms that currently
appear in all of MEDLINE or through an exact Google
search.
Not only do the introduced rules generate new

synonyms, but are also able to recreate 67 % of all
synonyms (68,174 out of 101,615) from all concepts
on the 2015 version. This illustrates the usefulness
of our presented methodology for not only synonym
generation for ontology curation and enhance-
ment. We now focus on how introducing variation
through synonym generation aids in identification
of Gene Ontology concepts from the biomedical
literature.

Synonym evaluation on a gold standard
The overall results for all methods performance on
CRAFT can be seen in Table 5 with more detailed anal-
ysis of each method following. More details about how

we evaluated performance of each method can be seen in
Evaluation of generated synonyms.
Besides the rules presented, there are a number of man-

ually curated external mappings from Gene Ontology
concepts to other data sources such as UniProt [36], the
Brenda database [37], andWikipedia [38]. To test the use-
fulness of these mappings as sources of synonyms, we
imputed synonyms for the Gene Ontology concept from
synonyms of the linked concept in the respective data
source. Overall, we find that external ontological map-
pings introduce significantly more errors than correctly
recognized concepts and are not suggested to be useful,
in their current form, as a whole, for concept recognition
(methods and detailed analysis of each data source can be
seen in Additional file 3).
Overall, the best results are obtained by using both

syntactic recursive and derivational rules; an increase in
F-measure of 0.112 is seen (0.610 vs 0.498). This per-
formance gain is the result of a large increase in recall
(0.225) with only a modest decrease in precision (0.049).
Examining the overall performance we find that all meth-
ods perform better than B1, while all but the external
synonyms perform better than B2. Overall, all genera-
tion methods increase recall with a decrease in precision,
which is to be expected when adding synonyms. We now
discuss the impact of synonyms generated through both
classes of rules.

Performance impact of generated synonyms
The Gene Ontology is broken down into three sub-
ontologies, Cellular Component (CC), Biological Process
(BP), and Molecular Function (MF). Terms from each
sub-ontology have differing biological meaning and tex-
tual characteristics – some rules are more applicable
to one sub-ontology than another, so we evaluate them
separately. We apply only the recursive syntactic rules
(Steps 1 & 3, described in “Methodological overview”)
to all concepts within the Gene Ontology and evalu-
ate on the full-text CRAFT corpus using our dictionary
based lookup system ConceptMapper; performance can
be seen in Table 6. For Cellular Component, only a
few new synonyms are generated, which is not surpris-
ing, because concepts from this branch normally do not

Table 5 Micro-averaged results for each synonym generation method on the CRAFT corpus

Method TP FP FN Precision Recall F-measure

Baseline (B1) 10,778 6,280 18,669 0.632 0.366 0.464

Baseline (B2) 12,217 7,367 17,230 0.624 0.415 0.498

All external synonyms 12,747 11,682 16,704 0.522 0.433 0.473

Recursive syntactic rules 12,411 7,587 17,036 0.621 0.422 0.502

Recursive syntactic and derivational rules 18,611 10,507 10,836 0.639 0.632 0.636

Bold highlighting indicates the method that produces the highest F-measure
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Table 6 Performance of manual Gene Ontology rules on the CRAFT corpus

Method Generated synonyms Affected terms TP FP FN P R F

Cellular Component (CC)

Baseline (B1) X X 5,532 452 2822 0.925 0.662 0.772

Baseline (B2) X X 5,532 452 2822 0.925 0.662 0.772

Syntactic recursion rules 23 21 5,532 452 2,822 0.925 0.662 0.772

Both rules 4,083 724 6,585 969 1,769 0.872 0.788 0.828

Molecular Function (MF)

Baseline (B1) X X 337 146 3,843 0.698 0.081 0.145

Baseline (B2) X X 1,772 964 2,408 0.648 0.424 0.512

Syntactic recursion rules 11,637 7,353 1,759 977 2,421 0.643 0.421 0.509

Both rules 14,413 7,401 2,422 1,074 1,758 0.693 0.579 0.631

Biological Process (BP)

Baseline (B1) X X 4,909 5,682 12,004 0.464 0.290 0.357

Baseline (B2) X X 4,913 5,951 12,000 0.452 0.291 0.354

Syntactic recursion rules 182,617 6,847 5,120 6,158 11,793 0.454 0.303 0.363

Both rules 272,535 8,675 9,604 8,464 7,309 0.532 0.568 0.549

All Gene Ontology

Baseline (B1) X X 10,778 6,280 18,669 0.632 0.366 0.464

Baseline (B2) X X 12,217 7,367 17,230 0.624 0.415 0.498

Syntactic recursion rules 194,277 14,221 12,411 7,588 17,036 0.621 0.422 0.502

Both rules 291,031 16,800 18,611 10,507 10,836 0.640 0.632 0.636

Bold highlighting indicates where the generated synonyms have a positive effect on the performance

appear compositional in nature. These new CC have no
impact when compared to the baselines.
Eighty six percent (7,353 out of 8,543) of terms within

Molecular Function had at least one new synonym gen-
erated by the recursive syntactic rules. Unexpectedly,
performance on MF slightly decreases. The performance
on Biological Process slightly increases with the addition
of recursive syntactic rules. BP sees the largest increase
in the number of new synonyms generated, with over
180,000 new synonyms for 46 % (6,847 out of 14,767) of
BP concepts. The syntactic recursive rules are most help-
ful in generating Biological Process synonyms that match
instances within CRAFT. For example, 74 more correct
instances of “GO:0016055 - Wnt receptor signaling path-
way”, expressed in the gold standard as “Wnt signaling”
and “Wnt signaling pathway”, are able to be identified.
These are generated through the signaling terms rule
which found that both the words “receptor” and “path-
way” were uninformative.
MF and BP share similarities in the kinds of errors

introduced: a true positive (TP) in the baseline is con-
verted to a false positive (FP) and false negative(s) (FN)
because a longer term is identified through one of the gen-
erated synonyms (one ConceptMapper parameter used
specifies that only the longest match is returned). It is pos-
sible that these are missing annotations within the gold

standard. For example, one of the generated synonyms for
“GO:0019838 - growth factor binding” is “binding growth
factor”. In the corpus, “bound growth factor” is annotated
with both “GO:0005488 - binding” and “GO:0008083 -
growth factor activity”. With our generated synonyms
added to the dictionary, the same text span is only anno-
tated with the more specific “GO:0019838 - growth factor
binding” which results in the removal of two true positives
and the introduction of one false positive, thus reducing
overall performance, but possibly increasing the accuracy
of annotations. If this is a wide-spread issue, changing the
parameters for our dictionary lookup will allow it to find
all concepts, which would identify all three annotations
instead of only the longest one.
Overall, despite the decrease in performance of Molec-

ular Function terms, the recursive syntactic rules slightly
improve concept recognition of the Gene Ontology on the
CRAFT corpus over baseline 2 (∼200 more TPs and∼200
more FPs introduced). Because the CRAFT corpus con-
tains only a small portion of the whole GO (1,108) and
these rules only account for reordering of tokens within
GO, we did not expect to see a large increase in concept
recognition performance.
When we apply both the recursive syntactic and deriva-

tional rules (Steps 1, 2 & 3, described in “Methodological
Overview”) to all concepts and evaluate on the full-text
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CRAFT corpus we see improvements for all branches
(Table 6). (The derivational rules cannot be evaluated on
their own due to an implementation dependency to the
recursive syntactic rules. The derivational rules assume
that all concepts passed in will already be decomposed
into their smallest GO components. The real power comes
when combining both rules because variation is being
introduced in only parts of the longer GO concepts.) Each
branch has different properties and when evaluated indi-
vidually, we see an increase in F-measure for all. This
increase is due to a large gain in recall (up to 0.27). For
both Biological Process and Molecular Function, preci-
sion also increases, while precision slightly decreases for
Cellular Component. When performance is aggregated
over all branches of the Gene Ontology, an increase in
F-measure of 0.14 (0.498 vs. 0.636) is seen; this comes
from both an increase in recall (0.22) and precision (0.02).
Our rules introduce ∼291,000 generated synonyms which
cover 66 % (16,800 out of 25,471) of all terms within GO.

Analysis of generated synonyms
Now we explore which generated synonyms contribute
the most to the increase in performance seen on the
gold standard corpus. The top 5 concepts that impact
these performance numbers are presented in Table 7.
For Cellular Component, the most helpful synonym
generated “immunoglobulin”⇒“antibody” is seen many

times within CRAFT and is contained within the dou-
ble word rule. The other four are generated using the
single word rule, specifically converting from the noun
form from the ontology to the adjective form. Through
examining Molecular Function terms, it became clear
that “annealing” was missing synonymous representation
within the Gene Ontology; within the annealing rule we
add a synonym of “hybridization”. Two of the next most
helpful synonyms are due to excluding low information
containing words and derivational variations. It should
be noted that within Molecular Function an even larger
increase in performance is seen between baseline 1 and
2 (Table 6), which takes into account the many “activity”
terms. These types of synonyms are also accounted for
in our rules and are compositionally combined into other
terms. For Biological Process we observe that the most
helpful synonyms are generated using the double word and
single word derivational rules.We also find that generating
different lexical forms of both single word concepts and
within longer terms helps to introduce many true positive
annotations.
From examining the top most helpful synonyms, we

provide evidence that the derivational synonyms improve
performance on a manually annotated corpus through
the introduction of more linguistic variability, which
decreases the gap between concepts in the ontology and
their expression in natural language text. Overall, the top

Table 7 The top 5 derivational synonyms that improve performance on the CRAFT corpus

GO ID Term name �TP �FP �FN Generated synonyms

Cellular Component

GO:0019814 Immunoglobulin complex +548 +0 −548 Antibody, antibodies

GO:0005634 Nucleus +218 +35 −218 Nuclear, nucleated

GO:0005739 Mitochondrion +135 +0 −135 Mitochondrial

GO:0031982 Vesicle +11 +3 −11 Vesicular

GO:0005856 Cytoskeleton +15 +0 −15 Cytoskeletal

Molecular Function

GO:0000739 DNA strand annealing activity +327 +1 −327 Hybridized, hybridization, annealing, annealed

GO:0033592 RNA strand annealing activity +327 +1 −327 Hybridized, hybridization, annealing, annealed

GO:0031386 Protein tag +6 +79 −6 Tag

GO:0005179 Hormone activity +1 +0 −1 Hormonal

GO:0043495 Protein anchor +1 +10 −1 Anchor

Biological Process

GO:0010467 Gene expression +2235 +361 −2235 Expression, expressed, expressing

GO:0007608 Sensory perception of smell +445 +1 −445 Olfactory

GO:0008283 Cell proliferation +97 +71 −97 Cellular proliferation, proliferative

GO:0007126 Meiosis +93 +2 −93 Meiotic, meiotically

GO:0006915 Apoptosis +173 +2 −173 Apoptotic

The GO terms that increase performance the most on CRAFT are along with the change (�) in number of true positives (TP), false positives (FP), and false negatives (FN) from
the baseline B2 (“activity” removed baseline). The generated synonyms that result in this increase are shown under ‘Generated synonyms’
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generated synonyms that improve performance do not
take into accountmuch of the compositional nature of GO
terms. We believe this is due to two aspects; 1) The anno-
tation guidelines used to define what constitutes a correct
mention of a GO concept in CRAFT [39] and 2) CRAFT
is only a small representation of what is contained within
the entire biomedical literature. This small representation
is due to the paper content (only mouse papers resulting
in functional annotation of at least one protein), small cor-
pus size, and appearance of only a small subsection of the
Gene Ontology. To further evaluate the synonyms gener-
ated by our rules without the aforementioned drawbacks,
in the next section, we explore the impact our rules make
on a large collection of the biomedical literature.

Evaluation of generated synonyms on a large full text
collection
We evaluated the impact of synonyms generated by both
recursive syntactic and derivational variant rules have on
the ability to recognize GO concepts within a large collec-
tion of one million full text documents. Unlike the previ-
ous evaluation, these documents do not have any manual
annotation or markup of Gene Ontology concepts, so we
are unable to calculate precision/recall/F-measure. How-
ever, we can calculate descriptive statistics and perform
manual evaluation of a random sample of the differences
in annotations produced when our rules are applied. For
these we used a version of GO from September 2015.
Applying our rules generates ∼1.5 million new synonyms
for 66 % of all GO concepts (27,610 out of 41,852).

Since one of the primary focuses of the Gene Ontology
is functional annotation of proteins, we imparted some of
that knowledge into the large scale analysis by calculat-
ing information content of each concept with respect to
the experimental UniProt GOA annotations [40]. We cal-
culated the information content (IC) described in Resnik
et al. [41]. The IC scores range from 0-12.25; a lower score
corresponds to a term that many proteins are annotated
with and should appear many times in the literature while
a high scoring term is more specific and might have only
one or two annotations in GOA. For example, a com-
mon term such as “GO:0005488 - binding” has a score of
0.80 while a more informative term “GO:0086047 - mem-
brane depolarization during Purkinje myocyte cell action
potential” has a score of 12.25. A score of “undefined”
corresponds to a concept that is not currently annotated
to any protein with GOA. It is our hypothesis that the
most informative terms (higher IC) would be more dif-
ficult to identify in text and that our rules, described
above, would help increase the frequency at which we can
recognize correct mentions of these highly informative
terms.
Statistics for both the concepts recognized using the

ontology (baseline 2 presented above) and rules applied
along with the differences broken down by information
content can be seen in Table 8. Utilizing only the informa-
tion contained within the Gene Ontology, and accounting
for “activity” terms, ∼97 million mentions of ∼12,000
unique GO concepts are identified. After generation of
synonyms by both the recursive syntactic and derivational

Table 8 Statistics of annotations produced on the large literature collection by information content

Baseline B2 With generated synonyms Impact of synonyms

IC # Terms # Annotations # Terms # Annotations New concepts New annotations Change

Undefined 3,548 16,929,911 4,303 23,653,066 755 6,723,155 +39.7 %

[0,1) 7 3,202,114 7 3,177,333 0 −24, 781 −0.1 %

[1,2) 16 2,655,365 17 2,801,431 1 146,066 +0.1 %

[2,3) 43 7,332,003 44 8,016,573 1 684,570 +0.1 %

[3,4) 94 4,474,422 101 5,188,968 7 714,546 +0.2 %

[4,5) 178 4,185,438 191 9,340,757 13 5,155,319 +123.8 %

[5,6) 354 13,547,423 373 22,284,670 19 8,737,247 +64.4 %

[6,7) 666 9,533,940 715 12,060,499 49 2,526,559 +26.3 %

[7,8) 1,044 18,354,299 1,154 21,251,834 110 2,897,535 +16.8 %

[8,9) 1,465 7,932,937 1,648 15,316,476 183 7,383,539 +92.4 %

[9,10) 1,551 4,813,153 1,813 7,671,601 262 2,858,448 +58.3 %

[10,11) 1,396 2,390,061 1,690 4,291,831 294 1,901,770 +79.1 %

[11,12) 942 1,246,758 1,162 2,279,005 220 1,032,247 +83.3 %

[12,13) 732 578,501 953 1,257,956 221 679,455 +117.2 %

Total 12,036 97,176,325 14,171 138,592,000 2,135 41,415,675 +42.5 %

Shows the number of unique terms and total number of annotations produced through baseline B2, both derivational and syntactic recursive rules applied, and the impact
the rules have overall. The change is percent change in total annotations
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rules, ∼138 million mentions of ∼14,100 unique GO
concepts are identified. In summation, our rules aid in the
recognition of∼41million more mentions for all GO con-
cepts (∼42 % increase) along with the ability to recognize
∼2,000 unique GO concepts (∼18 % increase) that are not
previously identified using the ontology alone. There were
a total of ∼2.5 million mentions associated with the 2,135
unique concepts that were only found when the synonym
generation rules were applied. The other ∼39 million new
mentions are associated with the ∼12,000 concepts both
dictionaries recognize.
The biggest increase in number of annotations and

concepts identified can be seen in those concepts with
undefined and higher information content (IC > 8). This
shows that the our syntactic and derivational rules suc-
cessfully introduce variation that allow the more specific
and information containing concepts to be recognized
either at all or more frequently. While we do not find
much change in annotations produced on the lower infor-
mation content concepts, we do see a negative change in
annotations produced for some of the low information
containing concepts. This is due to our rules generating
synonyms that can help to identify more specific con-
cepts. For example, “GO:0005215 - transporter activity”
is found ∼75,000 fewer times after the addition of our
generated synonyms due to more specific transporters
being identified. For instance, in the following sentence,
the bold text corresponds to the concept recognized using
the baseline, while the italicized concept is exactly gen-
erated through the use of our rules: “The present study
was aimed to evaluate whether intraperitoneal carnitine
(CA), a transporter of fatty acyl-CoA into the mitochon-
dria. . . .” (PMID: 17239403). The usefulness of these rules
goes beyond that of just improving our recognition of con-
cepts from test as identification ofmore informational GO
concepts has been shown to increase performance on the
protein function prediction task [8, 9].
Examining the overall numbers of concepts and men-

tions recognized provides insights into how useful the
synonyms generated are for recognition of GO concepts
from the biomedical literature. Since most mentions iden-
tified using only the ontology information were also found
when the rules were applied, this indicates that our rules
aid in identification of many new concepts along with new
mentions of concepts, thus leading to an overall increase
in recall. We saw in evaluation on CRAFT that both preci-
sion and recall were increased; we explore throughmanual
validation the accuracy of concepts identified utilizing
the generated synonyms on a large scale in the following
section.

Manual validation of gene ontologymentions
Although we found an improvement in performance
on the CRAFT corpus and on the larger corpus a

significant number of additional concepts and mentions
were identified through our synonym generation rules,
we are hesitant to reach any further conclusions with-
out some manual validation of the accuracy of these
generated synonyms. There are too many concepts and
annotations produced to manually validate them all, so
we performed validation of a randomly distributed subset
of concepts and instances of those concepts within text.
For cases where the validity of the term was unclear from
the matched term text alone we went back to the origi-
nal paper and viewed the annotation in sentential context.
For a baseline of performance, we validated a random
sample of 1 % of baseline concepts (125 concepts with ∼
1,200 randomly sampled mentions) from each IC range
and a random sample of 10 % of all new concepts (217
terms with ∼1,450 randomly sampled mentions) recog-
nized through our rules; these results are presented in
Table 9. We find that overall accuracy is very high (0.94)
for the concepts recognized only utilizing the ontology
information. A majority of these text spans identified
are exact, or very near, matches to the official onto-
logical name or one current synonyms. The only vari-
ation introduced is through a stemmer or lemmatizer
used in the concept recognition pipeline (see Additional
file 2 for more details). The annotations produced when
using synonyms generated through our rules do not have
as high of accuracy (0.74) but still produce reasonable
results.
Earlier, we hypothesized that overgeneration of syn-

onyms would not hinder performance because synonyms
that contain incorrect syntactic format or those that are
not lexically sound, would not appear within the text
we are searching. While performing manual evaluation
of annotations produced, we noted that a majority of
the errors came from three scenarios: 1) naive stem-
ming introducing incorrect concepts (60 %), 2) incorrect
level of specificity due to information loss (25 %), and
3) inclusion of incorrect punctuation (15 %). A detailed
error analysis along with strategies to correct them is
presented in Additional file 4. Based upon these results,
we do not believe that the 1.5 million new synonyms
generated introduce many false positives from overgener-
ation. While we see a decrease in accuracy in annotations
returned from text when we include the synonyms gener-
ated by our rules, we do not attribute the decrease entirely
to the synonyms themselves, as over half of the errors are
due to interaction of synonyms and the stemmer utilized
for dictionary lookup (Additional file 4). An interesting
observation is that sometimes generating a phrase or syn-
onym that initially appears incorrect can actually aid in
recognition. An example is the different adjective forms
of “protein”; most would use the form “proteinaceous”,
but another form is generated through Lexical Variant
Generator (LVG), “protenic”. This appears multiple times
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Table 9 Results of manual inspection of random samples of annotations

Baseline B2 With rules Overall

IC # Terms # Annotations Accuracy # Terms # Annotations Accuracy Accuracy

Undefined 35 231 0.98 75 363 0.70 0.81

[0,1) 1 15 0.20 0 0 0.00 0.20

[1,2) 1 15 1.00 1 4 1.00 1.00

[2,3) 1 15 1.00 1 4 1.00 1.00

[3,4) 1 4 1.00 1 1 0.00 0.80

[4,5) 2 30 0.60 2 24 0.88 0.72

[5,6) 4 60 0.97 2 13 0.23 0.84

[6,7) 7 79 0.99 5 41 0.49 0.82

[7,8) 10 136 0.89 11 116 0.65 0.78

[8,9) 15 197 0.98 19 163 0.83 0.91

[9,10) 16 175 0.97 26 205 0.79 0.87

[10,11) 14 119 0.83 30 217 0.80 0.81

[11,12) 10 103 0.97 22 141 0.77 0.86

[12,13) 8 93 0.98 22 156 0.72 0.82

Total 125 1272 0.94 217 1448 0.74 0.83

Accuracy, calculated via manual review of textual annotations for correctness, of random subsets of concepts recognized from the large literature collections. We sampled
1 % of concepts, with up to 15 randomly sampled specific text spans per concept, from concepts identified using baseline B2. We sampled 10 % of concepts, with up to 15
randomly sampled text spans per concept, from the new concepts recognized through the presented synonym generation rules. Overall accuracy is calculated by combining
annotations of the same IC from baseline and with our rules

within articles translated into English, for example, the
concept “GO:0042735 - protein body” is seen within the
following sentence “The activity is exhibited through a
protenic body of NBCF. . . ” (PMID: 1982217).

The impact of supercomputing on concept recognition
tasks
We ran the our concept recognition pipeline over the large
full text collection on the Pando supercomputer located
at the University of Colorado, Boulder campus. It has 60
– 64 core systems with 512GB each along with 4 – 48
core systems with 1TB ram each, for a total of 4,032 com-
pute nodes. We utilized a quarter of the machine and
ran our pipeline over 1,000 directories with 1,000 full
text documents in each. We were able to produce GO
annotations for all one million documents in around 10
minutes. Granted, no components are particularly com-
plicated. They consist of a sentence splitter, tokenizer,
stemmer/lemmatizer, followed by dictionary lookup, but
we have performed similar tasks on a large memory
machine, with 32 cores and the complete task has taken
3–4 weeks. Given that Pubmed consists of over 24 mil-
lion publications, if it was possible to obtain all documents
and performance is linear to the number of documents,
we could recognize GO concepts from the entirety of the
biomedical literature in around 4 hrs. More complex and
time consuming tasks, such as relation extraction, will
take longer but will still be on the order of days or weeks

utilizing the power of a supercomputer, since these tasks
are “embarrassingly parallel”.

Generalization to other biomedical ontologies
The synonym generation methodology presented here,
of breaking down complex concepts into their most
constituent parts, generating synonym for the parts,
then recursively combining to form synonyms of the
original concept is one that can generalize to many
other ontologies or standardized terminologies. The Gene
Ontology contains very complex and lengthy worded
concepts; the rules required to implement composi-
tional synonyms in other ontologies might not need
as many syntactic and derivational rules as we present
here. Besides GO we can envision similar method-
ologies easily applied to Human Phenotype Ontology
(HPO), Chemical Entities of Biological Interest (ChEBI),
SNOMED, and International Classification of Diseases 10
(ICD10).
One example, within the Human Phenotype Ontology

(HPO) [42], there is a high level HPO term that cor-
responds to “phenotypic abnormality”. There are just
over 1,000 terms (∼10 % of all HPO concepts) that
are descendants of “phenotypic abnormality” that can
be decomposed into: “abnormality of [the] other con-
cept” (e.g. HP:0000818 - abnormality of endocrine sys-
tem). Not only can we add syntactic rules to reorder
words, semantic synonyms of “abnormality”, such as
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“malformation” or “deformity”, can be added to express
the concepts in similar ways. There are many other
concepts that could benefit from recursively generating
synonyms as the HPO appears to have compositional
characteristics as well. There could also be subsets of
rules depending on the context; recognizing concepts
in doctor’s notes or electronic medical record will be
expressed differently than those within the biomedical
literature.

Conclusions
In this work, we present a set of simple language gen-
eration rules to automatically generate synonyms for
concepts in the Gene Ontology. These rules take into
account the compositional nature of GO terms along
with manually created syntactic and derivational vari-
ants derived from discussions with biologists, ontolo-
gists, and through analyzing Gene Ontology concepts as
they are expressed within the literature. The 18 hand-
crafted rules automatically generate over ∼1.5 million
new synonyms for ∼66 % of all concepts within the Gene
Ontology. We acknowledge the approach overgenerates
synonyms, but we find that many generated synonyms
do not appear within biomedical text, thus not hindering
performance.
We argue that current synonyms in structured ontolo-

gies are insufficient for text-mining due to the vast
degree of variability of expression within natural lan-
guage text; our methods do not propose to solve this
problem, but make a step in the right direction. This
claim is supported through the examination of spe-
cific examples of concept variation in biomedical text
and an empirical evaluation of the overlap of cur-
rent GO synonyms and their expression in the CRAFT
corpus.
We evaluate our synonym generation rules both intrin-

sically and extrinsically. Utilizing the CRAFT corpus for
intrinsic evaluation, we evaluate three different sources
of automatically generated synonyms 1) external ontology
mappings, 2) recursive syntactic rules and 3) derivational
variant rules. External mappings introduced too many
false positives and are currently not recommended for use.
The recursive syntactic rules added ∼194,000 new syn-
onyms but did not significantly affect performance. Using
a combination of recursive syntactic rules and derivational
variant rules ∼300,000 new synonyms were generated,
resulting in an increase in F-measure performance of 0.14,
mostly due to greatly increased recall. This illustrates the
importance of derivational variants for capturing natural
expression.
Our rules were extrinsically evaluated on a large col-

lection of one million full text documents. The rules
aid in the recognition of ∼2,000 more unique concepts
and increase the frequency in which all concepts are

identified by 41 % over the baseline (Table 9), using
only current information contained within the Gene
Ontology. Specifically, the synonyms generated aid in
the recognition of more complex and informative con-
cepts. Manual validation of random samples conclude
accuracy is not as high as desirable (74 %). An error
analysis produced concrete next steps to increase the
accuracy; simply removing one generation sub-rule, and
filtering mentions with unmatched punctuation, increases
accuracy of a random sample of 217 newly recognized
concepts (∼1,450 mentions) to 83 %. Overall, man-
ual analysis of 342 concepts (∼2,700 mentions) leads
to an accuracy of 88 % (Additional file 4). We find
that our rules increase the ability to recognize con-
cepts from the Gene Ontology within the biomedical
literature.
Even though we chose a specific dictionary based-

system, ConceptMapper, to evaluate our rules, the gen-
erated synonyms can also be useful for many other
applications. Any other dictionary based system can sup-
plement its dictionary with the generated synonyms.
Additionally, any machine learning or statistical based
methods will be able to utilize the synonyms we gener-
ate to try to normalize the span of text identified as a
specific entity type to an ontological identifier; this will
provide a richer feature representation for target con-
cepts. In addition, we provide examples of how these
rules could generalize to other biomedical ontologies and
discuss the impact of supercomputing on scaling this
work.
Not only have our rules proven to be helpful for recogni-

tion of GO concepts, but there are also other applications
separate from the evaluated task. They could be used to
identify inconsistencies within the current Gene Ontol-
ogy synonyms. Concepts that share similar patterns, i.e.
regulation of X, should all contain synonyms that corre-
spond to a certain syntactic pattern. While performing
this work we identified a few concepts that should con-
tain synonyms but do not, illustrating the usefulness of
the presented rules for ontology quality assurance as orig-
inally outlined in Verspoor et al. [27]. Additionally, a
certain conservative subset of our rules could easily be
incorporated into TermGenie [24], a web application that
automatically generates new ontology terms. Our rules
would be of help to generate synonyms of the auto-
matically generated concepts. It is our desire to submit
the “good” synonyms identified within the text to the
Gene Ontology Consortium for curation into the ontol-
ogy. Additionally, there could possibly be a “text mining”
synonym category added or we can deposit them, for the
time being, within a larger application such as Freebase
[43]. We would like other people to be able to use our
synonyms for text mining so we provide the full list as
Additional file 5.
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