397 research outputs found

    (Non)Existence of Pleated Folds: How Paper Folds Between Creases

    Get PDF
    We prove that the pleated hyperbolic paraboloid, a familiar origami model known since 1927, in fact cannot be folded with the standard crease pattern in the standard mathematical model of zero-thickness paper. In contrast, we show that the model can be folded with additional creases, suggesting that real paper “folds” into this model via small such creases. We conjecture that the circular version of this model, consisting simply of concentric circular creases, also folds without extra creases. At the heart of our results is a new structural theorem characterizing uncreased intrinsically flat surfaces—the portions of paper between the creases. Differential geometry has much to say about the local behavior of such surfaces when they are sufficiently smooth, e.g., that they are torsal ruled. But this classic result is simply false in the context of the whole surface. Our structural characterization tells the whole story, and even applies to surfaces with discontinuities in the second derivative. We use our theorem to prove fundamental properties about how paper folds, for example, that straight creases on the piece of paper must remain piecewise-straight (polygonal) by folding.National Science Foundation (U.S.) (CAREER Award CCF-0347776

    Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings

    Get PDF
    The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is generalized by introducing couplings of mesons to derivatives of the nucleon field in the Lagrangian density. This approach allows an effective description of a state-dependent in-medium interaction in the mean-field approximation. Various parametrizations for the generalized couplings are developed and applied to infinite nuclear matter. In this approach, scalar and vector self-energies depend on both density and momentum similarly as in the Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much less repulsive at high nucleon energies as compared to standard relativistic mean field models and thus agrees better with experimental findings. The derivative couplings in the extended model have significant effects on properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure

    Optimized whole genome association scanning for discovery of HLA class I-restricted minor histocompatibility antigens

    Get PDF
    Patients undergoing allogeneic stem cell transplantation as treatment for hematological diseases face the risk of Graft-versus-Host Disease as well as relapse. Graft-versus-Host Disease and the favorable Graft-versus-Leukemia effect are mediated by donor T cells recognizing polymorphic peptides, which are presented on the cell surface by HLA molecules and result from single nucleotide polymorphism alleles that are disparate between patient and donor. Identification of polymorphic HLA-binding peptides, designated minor histocompatibility antigens, has been a laborious procedure, and the number and scope for broad clinical use of these antigens therefore remain limited. Here, we present an optimized whole genome association approach for discovery of HLA class I minor histocompatibility antigens. T cell clones isolated from patients who responded to donor lymphocyte infusions after HLA-matched allogeneic stem cell transplantation were tested against a panel of 191 EBV-transformed B cells, which have been sequenced by the 1000 Genomes Project and selected for expression of seven common HLA class I alleles (HLA-A*01:01, A*02:01, A*03:01, B*07:02, B*08:01, C*07:01, and C*07:02). By including all polymorphisms with minor allele frequencies above 0.01, we demonstrated that the new approach allows direct discovery of minor histocompatibility antigens as exemplified by seven new antigens in eight different HLA class I alleles including one antigen in HLA-A*24:02 and HLA-A*23:01, for which the method has not been originally designed. Our new whole genome association strategy is expected to rapidly augment the repertoire of HLA class I-restricted minor histocompatibility antigens that will become available for donor selection and clinical use to predict, follow or manipulate Graft-versus-Leukemia effect and Graft-versus-Host Disease after allogeneic stem cell transplantation.Development and application of statistical models for medical scientific researc

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Counting the Faces of Randomly-Projected Hypercubes and Orthants, with Applications

    Get PDF
    Abstract. Let A be an n by N real-valued matrix with n < N; we count the number of k-faces fk(AQ) when Q is either the standard N-dimensional hypercube IN or else the positive orthant RN +. To state results simply, consider a proportional-growth asymptotic, where for fixed ÎŽ, ρ in (0, 1), we have a sequence of matrices An,Nn and of integers kn with n/Nn → ÎŽ, kn/n → ρ as n → ∞. If each matrix An,Nn has its columns in general position, then fk(AIN)/fk(I N) tends to zero or one depending on whether ρ> min(0, 2 − ή−1) or ρ < min(0, 2 − ή−1). Also, if each An,Nn is a random draw from a distribution which is invariant under right multiplication by signed permutations, then fk(ARN +)/fk(RN +) tends almost surely to zero or one depending on whether ρ> min(0, 2 − ή−1) or ρ < min(0, 2 − ή−1). We make a variety of contrasts to related work on projections of the simplex and/or cross-polytope. These geometric face-counting results have implications for signal processing, information theory, inverse problems, and optimization. Indeed, face counting is related to conditions for uniqueness of solutions of underdetermine

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    The rapid atmospheric monitoring system of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or 'rapid') monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction

    The Rapid Atmospheric Monitoring System of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10^17 eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e.g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction

    Ultrahigh energy neutrinos at the pierre auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEs) has become a priority in experimental astroparticle physics. UHEs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ) or in the Earth crust (Earth-skimming ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEs in the EeV range and above

    Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Get PDF
    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\"ue and averaged monthly models, the utility of the GDAS data is shown
    • 

    corecore