The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is
generalized by introducing couplings of mesons to derivatives of the nucleon
field in the Lagrangian density. This approach allows an effective description
of a state-dependent in-medium interaction in the mean-field approximation.
Various parametrizations for the generalized couplings are developed and
applied to infinite nuclear matter. In this approach, scalar and vector
self-energies depend on both density and momentum similarly as in the
Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much
less repulsive at high nucleon energies as compared to standard relativistic
mean field models and thus agrees better with experimental findings. The
derivative couplings in the extended model have significant effects on
properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure