411 research outputs found

    Velo-Cardio-Facial Syndrome

    Get PDF
    Velocardiofacial syndrome (VCFS), also known as DiGeorge, conotruncal anomaly face, and Cayler syndromes, is caused by a microdeletion in the long arm of Chromosome 22. We review the history of the syndrome from the first clinical reports almost half a century ago to the current intriguing molecular findings associating genes from the microdeletion region and the physical and neuropsychiatric phenotype of the syndrome. Velocardiofacial syndrome has a wide spectrum of more than 200 physical manifestations including palate and cardiac anomalies. Yet, the most challenging manifestations of VCFS are the learning disabilities and neuropsychiatric disorders. As VCFS is relatively common and as up to one third of the participants with VCFS develop schizophrenia-like psychotic disorder, the syndrome is the most commonly known genetic risk factor to schizophrenia. Identifying the genetic, cognitive, and psychiatric risk factors for VCFS-schizophrenia is under the focus of intensive research

    Alcohol metabolizing genes and alcohol phenotypes in an Israeli household sample

    Get PDF
    BACKGROUND: Alcohol dehydrogenase 1B and 1C (ADH1B and ADH1C) variants have been robustly associated with alcohol phenotypes in East Asian populations, but less so in non-Asian populations where prevalence of the most protective ADH1B allele is low (generally <5%). Further, the joint effects of ADH1B and ADH1C on alcohol phenotypes have been unclear. Therefore, we tested the independent and joint effects of ADH1B and ADH1C on alcohol phenotypes in an Israeli sample, with higher prevalence of the most protective ADH1B allele than other non-Asian populations. METHODS: A structured interview assessed lifetime drinking and alcohol use disorders (AUDs) in adult Israeli household residents. Four single nucleotide polymorphisms (SNPs) were genotyped: ADH1B (rs1229984, rs1229982, and rs1159918) and ADH1C (rs698). Regression analysis examined the association between alcohol phenotypes and each SNP (absence vs. presence of the protective allele) as well as rs698/rs1229984 diplotypes (also indicating absence or presence of protective alleles) in lifetime drinkers (n = 1,129). RESULTS: Lack of the ADH1B rs1229984 protective allele was significantly associated with consumption- and AUD-related phenotypes (OR = 1.77 for AUD; OR = 1.83 for risk drinking), while lack of the ADH1C rs698 protective allele was significantly associated with AUD-related phenotypes (OR = 2.32 for AUD). Diplotype analysis indicated that jointly ADH1B and ADH1C significantly influenced AUD-related phenotypes. For example, among those without protective alleles for ADH1B or ADH1C, OR for AUD was 1.87 as compared to those without the protective allele for ADH1B only and was 3.16 as compared to those with protective alleles for both ADH1B and ADH1C. CONCLUSIONS: This study adds support for the relationship of ADH1B and ADH1C and alcohol phenotypes in non-Asians. Further, these findings help clarify the mixed results from previous studies by showing that ADH1B and ADH1C jointly effect AUDs, but not consumption. Studies of the association between alcohol phenotypes and either ADH1B or ADH1C alone may employ an oversimplified model, masking relevant information

    Alcohol consumption mediates the relationship between ADH1B and DSM-IV alcohol use disorder and criteria

    Get PDF
    OBJECTIVE: A single nucleotide variation in the alcohol dehydrogenase 1B (ADH1B) gene, rs1229984, produces an ADH1B enzyme with faster acetaldehyde production. This protective variant is associated with lower alcohol consumption and lower risk for alcohol use disorders (AUDs). Based on the premise that faster ADH1B kinetics decreases alcohol consumption, we formally tested if the association between ADH1B variant rs1229984 and AUDs occurs through consumption. We also tested whether the association between rs1229984 and each of the 11 Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), AUD criteria occurs through consumption. METHOD: A total of 1,130 lifetime drinkers from an Israeli household sample were assessed with a structured interview and genotyped for rs1229984 (protective allele frequency = 0.28). Logistic regression evaluated the association between rs1229984 and each phenotype (AUDs, 11 individual DSM-IV criteria). For phenotypes significantly related to rs1229984, the effect through consumption was tested with logistic regression and bootstrapping. RESULTS: ADH1B rs1229984 was significantly associated with AUDs and six criteria, with odds ratios ranging from 1.32 to 1.96. The effect through consumption was significant for these relationships, explaining 23%-74% of the total ADH1B effect. CONCLUSIONS: This is the first study to show that ADH1B rs1229984 is related to 6 of the 11 DSM-IV AUD criteria and that alcohol consumption explained a significant proportion of these associations and the association of ADH1B with AUDs. Better understanding of the relationship between ADH1B and the DSM-IV AUD criteria, including effects through consumption, will enhance our understanding of the etiologic model through which AUDs can occur

    Assessment of Various Density Functionals and Basis Sets for the Calculation of Molecular Anharmonic Force Fields

    Full text link
    In a previous contribution (Mol. Phys. {\bf 103}, xxxx, 2005), we established the suitability of density functional theory (DFT) for the calculation of molecular anharmonic force fields. In the present work, we have assessed a wide variety of basis sets and exchange-correlation functionals for harmonic and fundamental frequencies, equilibrium and ground-state rotational constants, and thermodynamic functions beyond the RRHO (rigid rotor-harmonic oscillator) approximation. The fairly good performance of double-zeta plus polarization basis sets for frequencies results from an error compensation between basis set incompleteness and the intrinsic error of exchange-correlation functionals. Triple-zeta plus polarization basis sets are recommended, with an additional high-exponent dd function on second-row atoms. All conventional hybrid GGA functionals perform about equally well: high-exchange hybrid GGA and meta-GGA functionals designed for kinetics yield poor results, with the exception of of the very recently developed BMK functional which takes a middle position along with the HCTH/407 (second generation GGA) and TPSS (meta-GGA) functionals. MP2 performs similarly to these functionals but is inferior to hybrid GGAs such as B3LYP and B97-1.Comment: Int. J. Quantum Chem., in press (special issue on vibrational spectroscopies

    Shyness discriminates between children with 22q11.2 deletion syndrome and Williams syndrome and predicts emergence of psychosis in 22q11.2 deletion syndrome

    Get PDF
    BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) is a common neurogenetic syndrome associated with high rates of psychosis. The aims of the present study were to identify the unique temperament traits that characterize children with 22q11.2DS compared to children with Williams syndrome (WS) and typically developing (TD) controls, and to examine temperamental predictors of the emergence of psychosis in 22q11.2DS. METHODS: The temperament of 55 children with 22q11.2DS, 36 with WS, and 280 TD children was assessed using the Emotionality, Activity, Sociability (EAS) Temperament Survey, Parental Ratings. The presence of a psychotic disorder was evaluated in 49 children and adolescents with 22q11.2DS at baseline and again 5.43 ± 2.23 years after baseline temperament assessment. RESULTS: Children with 22q11.2DS scored higher on Shyness compared to WS and TD controls. Children with 22q11.2DS and WS scored higher on Emotionality and lower on Activity compared to TD controls. Shyness was more severe in older compared to younger children with 22q11.2DS. Baseline Shyness scores significantly predicted the later emergence of a psychotic disorder at follow-up, in children with 22q11.2DS. CONCLUSIONS: Our results suggest that shyness is an early marker associated with the later emergence of psychosis in 22q11.2DS

    Paired Orbitals for Different Spins equations

    Full text link
    Eigenvalue-type equations for Lowdin-Amos-Hall spin-paired (corresponding) orbitals are developed to provide an alternative to the standard spin-polarized Hartree-Fock or Kohn-Sham equations. Obtained equations are non-canonical unrestricted Hartree-Fock-type equations in which non-canonical orbitals are fixed to be biorthogonal spin-paired orbitals. To derive paired orbitals for different spins (PODS) equations there has been applied Adams-Gilbert localizing operator approach. PODS equations are especially useful for treatment of the broken-symmetry solutions for antiferromagnetic materials

    Charge separation: From the topology of molecular electronic transitions to the dye/semiconductor interfacial energetics and kinetics

    Full text link
    Charge separation properties, that is the ability of a chromophore, or a chromophore/semiconductor interface, to separate charges upon light absorption, are crucial characteristics for an efficient photovoltaic device. Starting from this concept, we devote the first part of this book chapter to the topological analysis of molecular electronic transitions induced by photon capture. Such analysis can be either qualitative or quantitative, and is presented here in the framework of the reduced density matrix theory applied to single-reference, multiconfigurational excited states. The qualitative strategies are separated into density-based and wave function-based approaches, while the quantitative methods reported here for analysing the photoinduced charge transfer nature are either fragment-based, global or statistical. In the second part of this chapter we extend the analysis to dye-sensitized metal oxide surface models, discussing interfacial charge separation, energetics and electron injection kinetics from the dye excited state to the semiconductor conduction band states

    CHARMM: The biomolecular simulation program

    Full text link
    CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983. © 2009 Wiley Periodicals, Inc.J Comput Chem, 2009.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63074/1/21287_ftp.pd

    Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    Get PDF
    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin
    • 

    corecore