252 research outputs found
Stability of 1+1 dimensional causal relativistic viscous hydrodynamics
The stability of the 1+1 dimensional solution of Israel-Stewart theory is
investigated. Firstly, the evolution of the temperature and the ratio of the
bulk pressure over the equilibrium pressure of the background is explored. Then
the stability with linear perturbations is studied by using the Lyapunov direct
method. It shows that the shear viscosity may weaken the instability induced by
the large peak of bulk viscosity around the phase transition temperature .Comment: 18 pages, 4 figures, 1 table; to be published in Nuclear Physics
Hadron Production in Heavy Ion Collisions
We review hadron production in heavy ion collisions with emphasis on pion and
kaon production at energies below 2 AGeV and on partonic collectivity at RHIC
energies.Comment: 31 pages, 26 figures, accepted for publication in Landolt-Boernstein
Volume 1-23
Nuclear dependence coefficient for the Drell-Yan and J/ production
Define the nuclear dependence coefficient in terms of ratio
of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon
collisions: . We argue that in small region, the
for the Drell-Yan and J/ production is given by a universal function:\
, where parameters a and b are completely determined by either
calculable quantities or independently measurable physical observables. We
demonstrate that this universal function is insensitive to the
A for normal nuclear targets. For a color deconfined nuclear medium, the
becomes strongly dependent on the A. We also show that our
for the Drell-Yan process is naturally linked to perturbatively
calculated at large without any free parameters, and the
is consistent with E772 data for all .Comment: latex, 28 pages, 10 figures, updated two figures, and add more
discussion
Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV
We report the STAR measurement of Phi meson production in Au+Au and p+p
collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi
spectra and yields are obtained at mid-rapidity for five centrality bins in
Au+Au collisions and for non-singly-diffractive p+p collisions. It is found
that the Phi transverse momentum distributions from Au+Au collisions are better
fitted with a single-exponential while the p+p spectrum is better described by
a double-exponential distribution. The measured nuclear modification factors
indicate that Phi production in central Au+Au collisions is suppressed relative
to peripheral collisions when scaled by the number of binary collisions. The
systematics of versus centrality and the constant Phi/K- ratio versus beam
species, centrality, and collision energy rule out kaon coalescence as the
dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
Energy dependence of charged pion, proton and anti-proton transverse momentum spectra for Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV
We study the energy dependence of the transverse momentum (pT) spectra for
charged pions, protons and anti-protons for Au+Au collisions at \sqrt{s_NN} =
62.4 and 200 GeV. Data are presented at mid-rapidity (|y| < 0.5) for 0.2 < pT <
12 GeV/c. In the intermediate pT region (2 < pT < 6 GeV/c), the nuclear
modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT
(pT >7 GeV/c) the modification is similar for both energies. The p/pi+ and
pbar/pi- ratios for central collisions at \sqrt{s_NN} = 62.4 GeV peak at pT ~ 2
GeV/c. In the pT range where recombination is expected to dominate, the p/pi+
ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are
smaller. For pT > 2 GeV/c, the pbar/pi- ratios at the two beam energies are
independent of pT and centrality indicating that the dependence of the pbar/pi-
ratio on pT does not change between 62.4 and 200 GeV. These findings challenge
various models incorporating jet quenching and/or constituent quark
coalescence.Comment: 19 pages and 6 figure
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
- …