43 research outputs found

    Dual-beam interferometry for ocean surface current vector mapping

    Get PDF
    The recent use of along-track interferometry (ATI) in synthetic aperture radar (SAR) has shown promise for synoptic measurement of ocean surface currents. ATI-SARs have been used to estimate wave fields, currents, and current features. This paper describes and analyzes a dual-beam along-track interferometer to provide spatially resolved vector surface velocity estimates with a single pass of an aircraft. The design employs a pair of interferometer beams, one squinted forward and one squinted aft. Each interferometric phase is sensitive to the component of surface Doppler velocity in the direction of the beam. Therefore, a proper combination of these measurements provides a vector surface velocity estimate in one pass of the aircraft. The authors find that precise measurements dictate widely spaced beams and that the spatial resolution for the squinted SAR is essentially identical to the sidelooking case. Practical instrument design issues are discussed, and an airborne system currently in development is described. Through computer simulation, they observe the azimuthal displacement of interferometric phases by moving surfaces identical to those of conventional SAR and find that such displacement can bias the estimated surface velocity.Peer Reviewe

    Microwave radar cross sections and Doppler velocities measured in the surf zone

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C12024, doi:10.1029/2005JC003022.The relationship between microwave imaging radar measurements of fluid velocities in the surf zone and shoaling, breaking, and broken waves is studied with field observations. Normalized radar cross section (NRCS) and Doppler velocity are estimated from microwave measurements at near-grazing angles, and in situ fluid velocities are measured with acoustic Doppler velocimeters (ADVs). Joint histograms of radar cross section and Doppler velocity cluster into identifiable distributions. The NRCS values from pixels with large NRCS and high Doppler velocities (>2 m/s) decrease with decreasing bore height to the shoreline, similar to scattering from a cylinder with decreasing radius. The Doppler velocities associated with these regions in the histograms agree well with theoretical wave phase velocities. Radar and ADV measurements of fluid velocities between bore crests have similarly shaped energy density spectra for frequencies above about 0.1 Hz, but energy levels from the radar are an order of magnitude higher than those of the ADV data. Instantaneous interbore Doppler velocities are correlated with ADV measured fluid velocities but are offset by 0.8 m/s. This offset may be due to Bragg wave phase velocities, wind drift, range and azimuth sidelobes, the finite spatial resolution of the radar, and differences between mean flows measured at the surface with radar and flows measured below the surface with ADVs. Shoaling and breaking waves measured through radar grating lobes significantly affect both the Doppler velocities near the edges of the images and the scattering from the rear faces of waves, causing large Doppler velocities to be observed in these regions.This work was funded by the ONR Coastal Geosciences Program

    Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Get PDF
    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown

    Numerical solver for vertical air motion estimation

    Get PDF
    We present preliminary research on a method to estimate Vertical Air Motion (VAM) at a particular height by comparing the measured rain-rate (RR) by a vertically-pointing S-band Frequency-Modulated Continuous-Wave (FMCW) radar with that of a ground-based disdrometer. The method is based on a constrained parametric solver, assuming high correlation between 5-min averaged rain rates measured by the radar and disdrometer. The method is tested over disdrometer and radar observations during the Verification of the ORigins Tornado EXperiment in South East US (VORTEX-SE) project. Finally, the results are partially validated by means of fitting a gamma distribution to the VAM-corrected DSD profiles and studying its parameters.This research is part of the projects PGC2018-094132-B-I00 and MDM2016-0600 (“CommSensLab” Excellence Unit) funded by Ministerio de Ciencia e Investigación (MCIN)/ Agencia Estatal de Investigación (AEI)/10.13039/501100011033/ FEDER “Una manera de hacer Europa”. The work of A. Salcedo-Bosch was supported under grant 2020 FISDU 00455 funded by Generalitat de Catalunya—AGAUR. The European Commission collaborated under projects H2020 ACTRIS-IMP (GA-871115) and H2020 ATMOACCESS (GA-101008004).Peer ReviewedPostprint (author's final draft

    PRELIMINARY INVESTIGATION OF SPLASH EFFECT ON HIGH WIND C-BAND HH-POL MODEL FUNCTION

    Get PDF
    The National Research Council Decadal Survey [1] identified a need for a future mission that would provide accurate real-time observations of ocean wind vectors from calm to tropical cyclone wind conditions with and without presence of rain. Tasked by National Oceanic and Atmospheric Administration (NOAA), the Jet Propulsion Laboratory (JPL) developed a future scatterometer design that would leverage its success on the heritage of QuikSCAT but would provide more accurate measurements under all weather conditions through use of Ku-and C-band coincident measurements of the ocean surface. To design a cost effective instrument for all weather operations from space the existing risks need to be mitigated. The work described in this paper attempts to validate results reported at hurricane strength winds i

    Pre-Whaling Genetic Diversity and Population Ecology in Eastern Pacific Gray Whales: Insights from Ancient DNA and Stable Isotopes

    Get PDF
    Commercial whaling decimated many whale populations, including the eastern Pacific gray whale, but little is known about how population dynamics or ecology differed prior to these removals. Of particular interest is the possibility of a large population decline prior to whaling, as such a decline could explain the ∼5-fold difference between genetic estimates of prior abundance and estimates based on historical records. We analyzed genetic (mitochondrial control region) and isotopic information from modern and prehistoric gray whales using serial coalescent simulations and Bayesian skyline analyses to test for a pre-whaling decline and to examine prehistoric genetic diversity, population dynamics and ecology. Simulations demonstrate that significant genetic differences observed between ancient and modern samples could be caused by a large, recent population bottleneck, roughly concurrent with commercial whaling. Stable isotopes show minimal differences between modern and ancient gray whale foraging ecology. Using rejection-based Approximate Bayesian Computation, we estimate the size of the population bottleneck at its minimum abundance and the pre-bottleneck abundance. Our results agree with previous genetic studies suggesting the historical size of the eastern gray whale population was roughly three to five times its current size

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Weather Observation by an Electronically Scanned Dual-Polarization Phase-Tilt Radar

    No full text
    corecore