64 research outputs found

    Ten commandments for the future of ageing research in the UK: a vision for action

    Get PDF
    Increases in longevity resulting from improvements in health care and living conditions together with a decrease in fertility rates have contributed to a shift towards an aged population profile. For the first time the UK has more people over age 60 than below 16 years of age. The increase in longevity has not been accompanied by an increase in disease-free life expectancy and research into ageing is required to improve the health and quality of life of older people. However, as the House of Lords reported, ageing research in the UK is not adequately structured and a clear vision and plan are urgently required. Hence, with the aim of setting a common vision for action in ageing research in the UK, a 'Spark Workshop' was organised. International experts from different disciplines related to ageing research gathered to share their perspectives and to evaluate the present status of ageing research in the UK. A detailed assessment of potential improvements was conducted and the prospective secondary gains were considered, which were subsequently distilled into a list of 'ten commandments'. We believe that these commandments, if followed, will help to bring about the necessary implementation of an action plan for ageing research in the UK, commensurate with the scale of the challenge, which is to transform the manifold opportunities of increased longevity into actual delivery of a society living not only for longer, but also healthier, wealthier and happier

    Potential Interplay between Dietary Saturated Fats and Genetic Variants of the NLRP3 Inflammasome to Modulate Insulin Resistance and Diabetes Risk: Insights from a Meta-Analysis of 19 005 Individuals

    Get PDF
    Scope Insulin resistance (IR) and inflammation are hallmarks of type 2 diabetes (T2D). The nod-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a metabolic sensor activated by saturated fatty acids (SFA) initiating IL-1 beta inflammation and IR. Interactions between SFA intake and NLRP3-related genetic variants may alter T2D risk factors. Methods Meta-analyses of six Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 19 005) tested interactions between SFA and NLRP3-related single-nucleotide polymorphisms (SNPs) and modulation of fasting insulin, fasting glucose, and homeostasis model assessment of insulin resistance. Results SFA interacted with rs12143966, wherein each 1% increase in SFA intake increased insulin by 0.0063 IU mL(-1) (SE +/- 0.002, p = 0.001) per each major (G) allele copy. rs4925663, interacted with SFA (beta +/- SE = -0.0058 +/- 0.002, p = 0.004) to increase insulin by 0.0058 IU mL(-1), per additional copy of the major (C) allele. Both associations are close to the significance threshold (p < 0.0001). rs4925663 causes a missense mutation affecting NLRP3 expression. Conclusion Two NLRP3-related SNPs showed potential interaction with SFA to modulate fasting insulin. Greater dietary SFA intake accentuates T2D risk, which, subject to functional validation, may be further elaborated depending on NLRP3-related genetic variants

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Association of Birth Weight With Type 2 Diabetes and Glycemic Traits: A Mendelian Randomization Study

    Get PDF
    IMPORTANCE Observational studies have shown associations of birth weight with type 2 diabetes (T2D) and glycemic traits, but it remains unclear whether these associations represent causal associations.OBJECTIVE To test the association of birth weight with T2D and glycemic traits using a mendelian randomization analysis.DESIGN, SETTING, AND PARTICIPANTS This mendelian randomization study used a genetic risk score for birth weight that was constructed with 7 genome-wide significant single-nucleotide polymorphisms. The associations of this score with birth weight and T2D were tested in a mendelian randomization analysis using study-level data. The association of birth weight with T2D was tested using both study-level data (7 single-nucleotide polymorphisms were used as an instrumental variable) and summary-level data from the consortia (43 single-nucleotide polymorphismswere used as an instrumental variable). Data from 180 056 participants from 49 studies were included.MAIN OUTCOMES AND MEASURES Type 2 diabetes and glycemic traits.RESULTS This mendelian randomization analysis included 49 studies with 41 155 patients with T2D and 80 008 control participants from study-level data and 34 840 patients with T2D and 114 981 control participants from summary-level data. Study-level data showed that a 1-SD decrease in birth weight due to the genetic risk score was associated with higher risk of T2D among all participants (odds ratio [OR], 2.10; 95% CI, 1.69-2.61; P=4.03 x 10-5), among European participants (OR, 1.96; 95% CI, 1.42-2.71; P=.04), and among East Asian participants (OR, 1.39; 95% CI, 1.18-1.62; P=.04). Similar results were observed from summary-level analyses. In addition, each 1-SD lower birth weight was associated with 0.189 SD higher fasting glucose concentration (beta=0.189; SE=0.060; P=.002), but not with fasting insulin, 2-hour glucose, or hemoglobin A1c concentration.CONCLUSIONS AND RELEVANCE In this study, a genetic predisposition to lower birth weight was associated with increased risk of T2D and higher fasting glucose concentration, suggesting genetic effects on retarded fetal growth and increased diabetes risk that either are independent of each other or operate through alterations of integrated biological mechanisms

    The European Solar Telescope

    Get PDF
    The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems

    Gain-of-Function Lipoprotein Lipase Variant rs13702 Modulates Lipid Traits through Disruption of a MicroRNA-410 Seed Site

    No full text
    Genome-wide association studies (GWAS) have identified hundreds of genetic variants that are associated with lipid phenotypes. However, data supporting a functional role for these variants in the context of lipid metabolism are scarce. We investigated the association of the lipoprotein lipase (LPL) variant rs13702 with plasma lipids and explored its potential for functionality. The rs13702 minor allele had been predicted to disrupt a microRNA (miR) recognition element (MRE) seed site (MRESS) for the human microRNA-410 (miR-410). Furthermore, rs13702 is in linkage disequilibrium (LD) with several SNPs identified by GWAS. We performed a meta-analysis across ten cohorts of participants that showed a statistically significant association of rs13702 with triacylglycerols (TAG) (p = 3.18 × 10−42) and high-density lipoprotein cholesterol (HDL-C) (p = 1.35 × 10−32) with each copy of the minor allele associated with 0.060 mmol/l lower TAG and 0.041 mmol/l higher HDL-C. Our data showed that an LPL 3′ UTR luciferase reporter carrying the rs13702 major T allele was reduced by 40% in response to a miR-410 mimic. We also evaluated the interaction between intake of dietary fatty acids and rs13702. Meta-analysis demonstrated a significant interaction between rs13702 and dietary polyunsaturated fatty acid (PUFA) with respect to TAG concentrations (p = 0.00153), with the magnitude of the inverse association between dietary PUFA intake and TAG concentration showing −0.007 mmol/l greater reduction. Our results suggest that rs13702 induces the allele-specific regulation of LPL by miR-410 in humans. This work provides biological and potential clinical relevance for previously reported GWAS variants associated with plasma lipid phenotypes

    Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake

    No full text
    BACKGROUND: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. OBJECTIVE: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. DESIGN: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data. RESULTS: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10(-8)) and lower fat (β ± SE: -0.21 ± 0.04%; P = 1.57 × 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)-increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10(-10)), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10(-7)). CONCLUSION: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis)
    corecore