406 research outputs found

    The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots

    Full text link
    [EN] Carpel development and evolution are central issues for plant biology. The conservation of genetic functions conferring carpel identity has been widely studied in higher plants. However, although genetic networks directing the development of characteristic features of angiosperm carpels such as stigma and style are increasingly known in Arabidopsis thaliana, little information is available on the conservation and diversification of these networks in other species. Here, we have studied the functional conservation of NGATHA transcription factors in widely divergent species within the eudicots. We determined by in situ hybridization the expression patterns of NGATHA orthologs in Eschscholzia californica and Nicotiana benthamiana. Virus-induced gene silencing (VIGS)-mediated inactivation of NGATHA genes in both species was performed and different microscopy techniques were used for phenotypic characterization. We found the expression patterns of EcNGA and NbNGA genes during flower development to be highly similar to each other, as well as to those reported for Arabidopsis NGATHA genes. Inactivation of EcNGA and NbNGA also caused severe defects in style and stigma development in both species. These results demonstrate the widely conserved essential role of NGATHA genes in style and stigma specification and suggest that the angiosperm-specific NGATHA genes were likely recruited to direct a carpel-specific developmental program.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (grant no. BIO2009-09920 to C. F.), the Spanish Ministerio de Economia y Competitividad (grant no. BIO2012-32902 to C. F.) and the Generalitat Valenciana (grant no. ACOMP/2012/099 and BEST/2009/054 to C. F.), We thank David Parejo and Victoria Palau (IBMCP) for glasshouse support, Marisol Gascon (IBMCP) for technical advice in microscopy, Amy Litt and Natalia Pabon-Mora (New York Botanical Gardens, Bronx, NY, USA) for providing VIGS plasmids and technical advice, and Barbara Ambrose (NYBG) for critical reading of the manuscript. E. californica germplasm used in this study was obtained from the National Genetic Resources Program (USA).Fourquin, C.; Ferrandiz Maestre, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist. 202(3):1001-1013. https://doi.org/10.1111/nph.12703S10011013202

    The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana

    Full text link
    [EN] Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene regulatory networks directing the development of carpel specialized tissues and patterning have been proposed based on genetic and molecular studies carried out in Arabidopsis thaliana. However, studies on the conservation/diversification of the elements and the topology of this network are still scarce. In this work, we have studied the functional conservation of transcription factors belonging to the SHI/STY/SRS family in two distant species within the eudicots, Eschscholzia californica and Nicotiana benthamiana. We have found that the expression patterns of EcSRS-L and NbSRS-L genes during flower development are similar to each other and to those reported for Arabidopsis SHI/STY/SRS genes. We have also characterized the phenotypic effects of NbSRS-L gene inactivation and overexpression in Nicotiana. Our results support the widely conserved role of SHI/STY/SRS genes at the top of the regulatory network directing style and stigma development, specialized tissues specific to the angiosperm carpels, at least within core eudicots, providing new insights on the possible evolutionary origin of the carpels.This work was supported by the Spanish MINECO/FEDER grants no BIO2012-32902 and BIO2015-64531-R to CFe. AG-F was supported by a predoctoral contract of the Generalitat Valenciana (ACIF/2013/044). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Gomariz, A.; Sánchez-Gerschon, V.; Fourquin, C.; Ferrandiz Maestre, C. (2017). The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science. 8:1-17. https://doi.org/10.3389/fpls.2017.00814S1178Alvarez, J. P., Goldshmidt, A., Efroni, I., Bowman, J. L., & Eshed, Y. (2009). The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis. The Plant Cell, 21(5), 1373-1393. doi:10.1105/tpc.109.065482ALVAREZBUYLLA, E., BENITEZ, M., DAVILA, E., CHAOS, A., ESPINOSASOTO, C., & PADILLALONGORIA, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83-91. doi:10.1016/j.pbi.2006.11.008Ballester, P., & Ferrándiz, C. (2017). Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 35, 68-75. doi:10.1016/j.pbi.2016.11.008Bombarely, A., Rosli, H. G., Vrebalov, J., Moffett, P., Mueller, L. A., & Martin, G. B. (2012). A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions®, 25(12), 1523-1530. doi:10.1094/mpmi-06-12-0148-taBowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rChávez Montes, R. A., Herrera-Ubaldo, H., Serwatowska, J., & de Folter, S. (2015). Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 3-4, 3-12. doi:10.1016/j.cpb.2015.08.002Clemente, T. (s. f.). Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Agrobacterium Protocols, 143-154. doi:10.1385/1-59745-130-4:143Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xColombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Crawford, B. C. W., Ditta, G., & Yanofsky, M. F. (2007). The NTT Gene Is Required for Transmitting-Tract Development in Carpels of Arabidopsis thaliana. Current Biology, 17(13), 1101-1108. doi:10.1016/j.cub.2007.05.079Crawford, B. C. W., & Yanofsky, M. F. (2011). HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development, 138(14), 2999-3009. doi:10.1242/dev.067793Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979Davidson, E. H., & Levine, M. S. (2008). Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences, 105(51), 20063-20066. doi:10.1073/pnas.0806007105Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Davila-Velderrain, J., Martinez-Garcia, J. C., & Alvarez-Buylla, E. R. (2016). Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany, 67(9), 2565-2572. doi:10.1093/jxb/erw123De Lucas, M., & Brady, S. M. (2013). Gene regulatory networks in the Arabidopsis root. Current Opinion in Plant Biology, 16(1), 50-55. doi:10.1016/j.pbi.2012.10.007Dreni, L., Pilatone, A., Yun, D., Erreni, S., Pajoro, A., Caporali, E., … Kater, M. M. (2011). Functional Analysis of All AGAMOUS Subfamily Members in Rice Reveals Their Roles in Reproductive Organ Identity Determination and Meristem Determinacy. The Plant Cell, 23(8), 2850-2863. doi:10.1105/tpc.111.087007Eklund, D. M., Cierlik, I., Ståldal, V., Claes, A. R., Vestman, D., Chandler, J., & Sundberg, E. (2011). Expression of Arabidopsis SHORT INTERNODES/STYLISH Family Genes in Auxin Biosynthesis Zones of Aerial Organs Is Dependent on a GCC Box-Like Regulatory Element. Plant Physiology, 157(4), 2069-2080. doi:10.1104/pp.111.182253Eklund, D. M., Ståldal, V., Valsecchi, I., Cierlik, I., Eriksson, C., Hiratsu, K., … Sundberg, E. (2010). The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis. The Plant Cell, 22(2), 349-363. doi:10.1105/tpc.108.064816Eklund, D. M., Thelander, M., Landberg, K., Staldal, V., Nilsson, A., Johansson, M., … Sundberg, E. (2010). Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development, 137(8), 1275-1284. doi:10.1242/dev.039594Ferrándiz, C., & Fourquin, C. (2013). Role of the FUL–SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany, 65(16), 4505-4513. doi:10.1093/jxb/ert479Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xFourquin, C., & Ferrándiz, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist, 202(3), 1001-1013. doi:10.1111/nph.12703Fourquin, C., Primo, A., Martínez-Fernández, I., Huet-Trujillo, E., & Ferrándiz, C. (2014). The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Annals of Botany, 114(7), 1535-1544. doi:10.1093/aob/mcu129Fourquin, C., Vinauger-Douard, M., Chambrier, P., Berne-Dedieu, A., & Scutt, C. P. (2007). Functional Conservation between CRABS CLAW Orthologues from Widely Diverged Angiosperms. Annals of Botany, 100(3), 651-657. doi:10.1093/aob/mcm136Fourquin, C., Vinauger-Douard, M., Fogliani, B., Dumas, C., & Scutt, C. P. (2005). Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences, 102(12), 4649-4654. doi:10.1073/pnas.0409577102Fridborg, I., Kuusk, S., Robertson, M., & Sundberg, E. (2001). The Arabidopsis Protein SHI Represses Gibberellin Responses in Arabidopsis and Barley. Plant Physiology, 127(3), 937-948. doi:10.1104/pp.010388Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510Heijmans, K., Ament, K., Rijpkema, A. S., Zethof, J., Wolters-Arts, M., Gerats, T., & Vandenbussche, M. (2012). Redefining C and D in the Petunia ABC. The Plant Cell, 24(6), 2305-2317. doi:10.1105/tpc.112.097030Ishikawa, M., Ohmori, Y., Tanaka, W., Hirabayashi, C., Murai, K., Ogihara, Y., … Hirano, H.-Y. (2009). The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes & Genetic Systems, 84(2), 137-146. doi:10.1266/ggs.84.137Islam, M. A., Lütken, H., Haugslien, S., Blystad, D.-R., Torre, S., Rolcik, J., … Clarke, J. L. (2013). Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants. PLoS ONE, 8(1), e53377. doi:10.1371/journal.pone.0053377Kim, S.-G., Lee, S., Kim, Y.-S., Yun, D.-J., Woo, J.-C., & Park, C.-M. (2010). Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 74(4-5), 337-351. doi:10.1007/s11103-010-9677-5Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.xLarsson, E., Franks, R. G., & Sundberg, E. (2013). Auxin and the Arabidopsis thaliana gynoecium. Journal of Experimental Botany, 64(9), 2619-2627. doi:10.1093/jxb/ert099Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951Lee, J.-Y. (2005). Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 132(22), 5021-5032. doi:10.1242/dev.02067Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006Martínez-Fernández, I., Sanchís, S., Marini, N., Balanzá, V., Ballester, P., Navarrete-Gómez, M., … Ferrándiz, C. (2014). The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00210Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Genetics, 12(4), 345-364. doi:10.1002/prot.340120407Moubayidin, L., & Østergaard, L. (2014). Dynamic Control of Auxin Distribution Imposes a Bilateral-to-Radial Symmetry Switch during Gynoecium Development. Current Biology, 24(22), 2743-2748. doi:10.1016/j.cub.2014.09.080Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2013). Gene networks controllingArabidopsis thalianaflower development. New Phytologist, 201(1), 16-30. doi:10.1111/nph.12444Orashakova, S., Lange, M., Lange, S., Wege, S., & Becker, A. (2009). TheCRABS CLAWortholog from California poppy (Eschscholzia californica,Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. The Plant Journal, 58(4), 682-693. doi:10.1111/j.1365-313x.2009.03807.xPabón-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Plant Physiology, 158(4), 1685-1704. doi:10.1104/pp.111.192104Pabón-Mora, N., Wong, G. K.-S., & Ambrose, B. A. (2014). Evolution of fruit development genes in flowering plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00300Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2016). An Evolutionary Framework for Carpel Developmental Control Genes. Molecular Biology and Evolution, msw229. doi:10.1093/molbev/msw229Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2017). Seed plant specific gene lineages involved in carpel development. Molecular Biology and Evolution, msw297. doi:10.1093/molbev/msw297Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2008). Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25(2), 237-245. doi:10.1046/j.0960-7412.2000.00942.xReyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.xStåldal, V., Cierlik, I., Chen, S., Landberg, K., Baylis, T., Myrenås, M., … Sundberg, E. (2012). The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Molecular Biology, 78(6), 545-559. doi:10.1007/s11103-012-9888-zStåldal, V., Sohlberg, J. J., Eklund, D. M., Ljung, K., & Sundberg, E. (2008). Auxin can act independently ofCRC,LUG,SEU,SPTandSTY1in style development but not apical-basal patterning of theArabidopsisgynoecium. New Phytologist, 180(4), 798-808. doi:10.1111/j.1469-8137.2008.02625.xSundberg, E., & Ostergaard, L. (2009). Distinct and Dynamic Auxin Activities During Reproductive Development. Cold Spring Harbor Perspectives in Biology, 1(6), a001628-a001628. doi:10.1101/cshperspect.a001628Tian, C., & Jiao, Y. (2015). A systems approach to understand shoot branching. Current Plant Biology, 3-4, 13-19. doi:10.1016/j.cpb.2015.08.001Trigueros, M., Navarrete-Gómez, M., Sato, S., Christensen, S. K., Pelaz, S., Weigel, D., … Ferrándiz, C. (2009). The NGATHA Genes Direct Style Development in the Arabidopsis Gynoecium. The Plant Cell, 21(5), 1394-1409. doi:10.1105/tpc.109.065508Vialette-Guiraud, A. C. M., Andres-Robin, A., Chambrier, P., Tavares, R., & Scutt, C. P. (2016). The analysis of Gene Regulatory Networks in plant evo-devo. Journal of Experimental Botany, 67(9), 2549-2563. doi:10.1093/jxb/erw119Wege, S., Scholz, A., Gleissberg, S., & Becker, A. (2007). Highly Efficient Virus-induced Gene Silencing (VIGS) in California Poppy (Eschscholzia californica): An Evaluation of VIGS as a Strategy to Obtain Functional Data from Non-model Plants. Annals of Botany, 100(3), 641-649. doi:10.1093/aob/mcm118Yamada, T., Yokota, S., Hirayama, Y., Imaichi, R., Kato, M., & Gasser, C. S. (2011). Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. The Plant Journal, 67(1), 26-36. doi:10.1111/j.1365-313x.2011.04570.xYamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., & Hirano, H.-Y. (2004). The YABBY Gene DROOPING LEAF Regulates Carpel Specification and Midrib Development in Oryza sativa. The Plant Cell, 16(2), 500-509. doi:10.1105/tpc.018044Yellina, A. L., Orashakova, S., Lange, S., Erdmann, R., Leebens-Mack, J., & Becker, A. (2010). Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo, 1(1), 13. doi:10.1186/2041-9139-1-13Youssef, H. M., Eggert, K., Koppolu, R., Alqudah, A. M., Poursarebani, N., Fazeli, A., … Schnurbusch, T. (2016). VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 49(1), 157-161. doi:10.1038/ng.3717Yuo, T., Yamashita, Y., Kanamori, H., Matsumoto, T., Lundqvist, U., Sato, K., … Taketa, S. (2012). A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Journal of Experimental Botany, 63(14), 5223-5232. doi:10.1093/jxb/ers182Zawaski, C., Kadmiel, M., Ma, C., Gai, Y., Jiang, X., Strauss, S. H., & Busov, V. B. (2011). SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytologist, 191(3), 678-691. doi:10.1111/j.1469-8137.2011.03742.

    The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development

    Full text link
    [EN] CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted.We thank Rafael Martinez-Pardo (IBMCP) for greenhouse support, Alejandro Terrones (IBMCP) for technical assistance and Elisabeth Johansen (University of Aarhus, Denmark) for providing VIGS plasmids and technical advice. This work was supported by the Spanish Ministerio de Ciencia e Innovacion (BIO2009-09920), the Spanish Ministerio de Economia y Competitividad (BIO2012-32902) and the Generalitat Valenciana (ACOMP/2012/099).Fourquin ., C.; Primo-Capella, A.; Martinez-Fernandez, I.; Huet-Trujillo, E.; Ferrandiz Maestre, C. (2014). The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Annals of Botany. 114(7):1535-1544. https://doi.org/10.1093/aob/mcu129S15351544114

    A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in Medicago genus

    Get PDF
    [EN] Angiosperms are the most diverse and numerous group of plants, and it is generally accepted that this evolutionary success owes in part to the diversity found in fruits, key for protecting the developing seeds and ensuring seed dispersal. Although studies on the molecular basis of morphological innovations are few, they all illustrate the central role played by transcription factors acting as developmental regulators. Here, we show that a small change in the protein sequence of a MADS-box transcription factor correlates with the origin of a highly modified fruit morphology and the change in seed dispersal strategies that occurred in Medicago, a genus belonging to the large legume family. This protein sequence modification alters the functional properties of the protein, affecting the affinities for other protein partners involved in high-order complexes. Our work illustrates that variation in coding regions can generate evolutionary novelties not based on gene duplication/subfunctionalization but by interactions in complex networks, contributing also to the current debate on the relative importance of changes in regulatory or coding regions of master regulators in generating morphological novelties.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (grant no. BIO2009-09920 to C.Fe.), the European Union (grant no. FP7-PEOPLE-PIRSES-2009-247589 to C.Fe. and A.C.d.O.), and a Fellowship for Foreign Young Postdocs from the Spanish Ministerio de Ciencia e Innovacion (to C.Fo.).Fourquin, C.; Del Cerro Fernández, C.; Victoria, FC.; Vialette-Guiraud, A.; De Oliveira, AC.; Ferrandiz Maestre, C. (2013). A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in Medicago genus. Plant Physiology. 162(2):907-917. https://doi.org/10.1104/pp.113.217570S907917162

    Role of the FUL-SHP network in the evolution of fruit morphology and function

    Full text link
    Arabidopsis research in the last decade has started to unravel the genetic networks directing gynoecium and fruit patterning in this model species. Only recently, the work from several groups has also started to address the conservation of these networks in a wide number of species with very different fruit morphologies, and we are now beginning to understand how they might have evolved. This review summarizes recent advances in this field, focusing mainly on MADS-box genes with a well-known role in dehiscence zone development, while also discussing how these studies may contribute to expand our views on fruit evolution.The work in the laboratory of Ferrándiz is supported by the Spanish Ministerio de Economia y Competitividad (grant no. BIO2012-32902 to CF) and the EU (FP7-PEOPLE-PIRSES-2009–247589).Ferrandiz Maestre, C.; Fourquin, C. (2014). Role of the FUL-SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany. 65(16):4505-4513. https://doi.org/10.1093/jxb/ert479S45054513651

    Quelles connaissances du Plan S et de la stratégie de non-cession des droits ??

    Get PDF
    Cette enquête intitulée « Quelle·s connaissance·s du Plan S et de la stratégie de rétention [non-cession] des droits ? » a été menée à la fin de l’année 2022 par le groupe juridique du groupe de travail science ouverte du Consortium Couperin (GTSO). Diffusée sous forme d’un questionnaire en ligne, elle s’adressait aux professionnels de l’information scientifique et technique (IST) et personnels des services d’appui à la recherche, travaillant dans des universités, organismes de recherche et grandes écoles. L’objectif de cette enquête était de mesurer le niveau de connaissance et d’appropriation du Plan S de ces professionnels, leurs besoins éventuels d’accompagnement, alors qu’il n’existe pas à ce jour de cadre d’application global du Plan S dans les établissements et structures de recherche françaises

    Transcriptional networks orchestrating programmed cell death during plant development

    Get PDF
    Transcriptional gene regulation is a fundamental biological principle in the development of eukaryotes. It does control not only cell proliferation, specification, and differentiation, but also cell death processes as an integral feature of an organism's developmental program. As in animals, developmentally regulated cell death in plants occurs in numerous contexts and is of vital importance for plant vegetative and reproductive development. In comparison with the information available on the molecular regulation of programmed cell death (PCD) in animals, however, our knowledge on plant PCD still remains scarce. Here, we discuss the functions of different classes of transcription factors that have been implicated in the control of developmentally regulated cell death. Though doubtlessly representing but a first layer of PCD regulation, information on PCD-regulating transcription factors and their targets represents a promising strategy to understand the complex machinery that ensures the precise and failsafe execution of PCD processes in plant development

    The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium

    Get PDF
    [EN] The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants, and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium. We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (grant no. BIO2009–09920 to Cristina Ferrándiz), the Fondazione Cariplo (grant “Fruitalia” to Lucia Colombo and Cristina Ferrándiz), and the European Union (grant no. FP7–PEOPLE–PIRSES–2009–247589 to Lucia Colombo, Cristina Ferrándiz, Antonio C. Oliveira).Martínez Fernández, I.; Sanchis, S.; Marini, N.; Balanzá Pérez, V.; Ballester Fuentes, P.; Navarrete Gomez, ML.; Oliveira, AC.... (2014). The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science. 5:210-1-210-11. https://doi.org/10.3389/fpls.2014.00210S210-1210-11

    Two euAGAMOUS genes control C-function in Medicago truncatula

    Get PDF
    [EN] C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.This work was funded by grants BIO2009-08134 and BIO2012-39849-C02-01 from the Spanish Ministry of Economy and Competitiveness and the Ramon y Cajal Program (RYC-2007-00627 to CGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serwatowska, J.; Roque Mesa, EM.; Gómez Mena, MC.; Constantin, GD.; Wen, J.; Mysore, KS.; Lund, OS.... (2014). Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS ONE. 9(8):103770-1-103770-12. https://doi.org/10.1371/journal.pone.0103770S103770-1103770-1298Prunet, N., & Jack, T. P. (2013). Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Flower Development, 3-33. doi:10.1007/978-1-4614-9408-9_1Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21(1), 73-79. doi:10.1016/j.semcdb.2009.10.005Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal, 61(6), 1014-1028. doi:10.1111/j.1365-313x.2009.04065.xHeijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box Genes and Floral Development: the Dark Side. Journal of Experimental Botany, 63(15), 5397-5404. doi:10.1093/jxb/ers233Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. doi:10.1038/346035a0Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rPinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics, 166(2), 1011-1023. doi:10.1534/genetics.166.2.1011Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25(7), 637-646. doi:10.1002/bies.10292Zahn, L. M., Leebens-Mack, J. H., Arrington, J. M., Hu, Y., Landherr, L. L., dePamphilis, C. W., … Ma, H. (2006). Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evolution Development, 8(1), 30-45. doi:10.1111/j.1525-142x.2006.05073.xFerrandiz, C. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development, 5(3), 484-495. doi:10.1101/gad.5.3.484Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xKapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S., & Takatsuji, H. (2002). Role of petuniapMADS3in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal, 32(1), 115-127. doi:10.1046/j.1365-313x.2002.01402.xPan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2), 163-173. doi:10.1105/tpc.6.2.163Dreni, L., & Kater, M. M. (2013). MADSreloaded: evolution of theAGAMOUSsubfamily genes. New Phytologist, 201(3), 717-732. doi:10.1111/nph.12555Brunner, A. M. (2000). Plant Molecular Biology, 44(5), 619-634. doi:10.1023/a:1026550205851Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of Multiple AGAMOUS-Like Genes in Male and Female Flowers of Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39(7), 701-710. doi:10.1093/oxfordjournals.pcp.a029424Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., … Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1), 51-62. doi:10.1046/j.1365-313x.1999.00351.xDong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Hofer, J. M., & Noel Ellis, T. (2014). Developmental specialisations in the legume family. Current Opinion in Plant Biology, 17, 153-158. doi:10.1016/j.pbi.2013.11.014Fourquin, C., del Cerro, C., Victoria, F. C., Vialette-Guiraud, A., de Oliveira, A. C., & Ferrándiz, C. (2013). A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus. Plant Physiology, 162(2), 907-917. doi:10.1104/pp.113.217570Hewitt EJ (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureau.Cheng, X., Wang, M., Lee, H.-K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2013). An efficient reverse genetics platform in the model legumeMedicago truncatula. New Phytologist, 201(3), 1065-1076. doi:10.1111/nph.12575D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.xTadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.xCheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Elisabeth Johansen, I., & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 40(4), 622-631. doi:10.1111/j.1365-313x.2004.02233.xWesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xGuerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy R, editor. Plant Molecular Biology. Oxford, UK: Bios Scientific Publishers, Academic Press. pp. 121–147.Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBenlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.xRoque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., … Cañas, L. A. (2012). Functional specialization of duplicated AP3-like genes inMedicago truncatula. The Plant Journal, 73(4), 663-675. doi:10.1111/tpj.12068Flanagan, C. A., Hu, Y., & Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant Journal, 10(2), 343-353. doi:10.1046/j.1365-313x.1996.10020343.xSieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365. doi:10.1105/tpc.9.3.355Busch, M. A. (1999). Activation of a Floral Homeotic Gene in Arabidopsis. Science, 285(5427), 585-587. doi:10.1126/science.285.5427.585Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345-349. doi:10.1016/j.virusres.2008.04.005Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M., & Yanofsky, M. F. (1992). Manipulation of flower structure in transgenic tobacco. Cell, 71(1), 133-143. doi:10.1016/0092-8674(92)90272-eMizukami, Y., & Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. doi:10.1016/0092-8674(92)90271-dCannon, S. B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., … Young, N. D. (2006). Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences, 103(40), 14959-14964. doi:10.1073/pnas.0603228103Young, N. D., & Bharti, A. K. (2012). Genome-Enabled Insights into Legume Biology. Annual Review of Plant Biology, 63(1), 283-305. doi:10.1146/annurev-arplant-042110-103754Jager, M. (2003). MADS-Box Genes in Ginkgo biloba and the Evolution of the AGAMOUS Family. Molecular Biology and Evolution, 20(5), 842-854. doi:10.1093/molbev/msg089Johansen, B., Pedersen, L. B., Skipper, M., & Frederiksen, S. (2002). MADS-box gene evolution—structure and transcription patterns. Molecular Phylogenetics and Evolution, 23(3), 458-480. doi:10.1016/s1055-7903(02)00032-5Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., … Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce ( Picea mariana ) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. doi:10.1046/j.1365-313x.1998.00250.xParcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395(6702), 561-566. doi:10.1038/26903Causier, B., Bradley, D., Cook, H., & Davies, B. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. The Plant Journal, 58(1), 41-52. doi:10.1111/j.1365-313x.2008.03759.xAiroldi, C. A., & Davies, B. (2012). Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. Journal of Genetics and Genomics, 39(4), 157-165. doi:10.1016/j.jgg.2012.02.008Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M. M., & Angenent, G. C. (1998). Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. The Plant Cell, 10(2), 171-182. doi:10.1105/tpc.10.2.171Tsuchimoto, S., van der Krol, A. R., & Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. doi:10.1105/tpc.5.8.843Airoldi, C. A., Bergonzi, S., & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences, 107(44), 18898-18902. doi:10.1073/pnas.1009050107Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in Action: Following Function in Duplicated Floral Homeotic Genes. Current Biology, 15(16), 1508-1512. doi:10.1016/j.cub.2005.07.063Birchler, J. A., & Veitia, R. A. (2007). The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. The Plant Cell, 19(2), 395-402. doi:10.1105/tpc.106.049338Birchler, J. A., & Veitia, R. A. (2009). The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 186(1), 54-62. doi:10.1111/j.1469-8137.2009.03087.xEdger, P. P., & Pires, J. C. (2009). Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 17(5), 699-717. doi:10.1007/s10577-009-9055-9Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.368140
    corecore