296 research outputs found

    The Farsi version of the Hypomania Check-List 32 (HCL-32): Applicability and indication of a four-factorial solution

    Get PDF
    Background: Data from the Iranian population for hypomania core symptom clusters are lacking. The aim of the present study was therefore to apply the Farsi version of the Hypomania-Check-List 32 (HCL-32), and to explore its factorial structure.Methods: A total of 163 Iranian out-patients took part in the study; 61 suffered from Major Depressive Disorder (MDD), and 102 suffered from Bipolar Disorders (BP). Participants completed the Mood Disorder Questionnaire (MDQ) and the Hypomania Checklist (HCL-32). Exploratory factor analyses were used to examine the properties of the HCL-32. A ROC-curve analysis was performed to calculate sensitivity and specificity.Results: The HCL-32 differentiated between patients with MDD and with BP. Psychometric properties were satisfactory: sensitivity: 73; specificity: 91. MDQ and HCL-32 did correlate highly. No differences were found between patients suffering from BP I and BP II.Discussion: Instead of the two-factorial structure of the HCL-32 reported previously, the present pattern of factorial results suggest a distinction between four factors: two broadly positive dimensions of hypomania ("physically and mentally active"; "positive social interactions") and two rather negative dimensions ("risky behavior and substance use"; "difficulties in social interaction and impatience").Conclusion: The Farsi version of the HCL-32 proved to be applicable, and therefore easy to introduce within a clinical context. The pattern of results suggests a four factorial solution. © 2011 Haghighi et al; licensee BioMed Central Ltd

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%

    Search for the standard model Higgs boson at LEP

    Get PDF

    Stress corrosion cracking: Characteristics, Mechanisms and Experimental study

    Get PDF
    Stress corrosion cracking (SCC) is a phenomenon in which the cracking of a metal alloy usually results from the combined action of a corrodent and tensile stress. Stresses that cause cracking can be residual or may be applied during service. A degree of mechanistic understanding of SCC will enable most metallic engineering materials to operate safely though stress corrosion cracking failures still continue to occur unexpectedly in industry. In this paper, the characteristics, mechanisms and methods of SCC prevention are reviewed. The results of experimental studies on alpha brass are also reported of which the failure mode conformed with the film-rupture and anodic dissolution mechanism

    Test of colour reconnection models using three-jet events in hadronic Z decays

    Get PDF
    Hadronic Z decays into three jets are used to test QCD models of colour reconnection (CR). A sensitive quantity is the rate of gluon jets with a gap in the particle rapidity distribution and zero jet charge. Gluon jets are identified by either energy-ordering or by tagging two b-jets. The rates predicted by two string-based tunable CR models, one implemented in JETSET (the GAL model), the other in ARIADNE, are too high and disfavoured by the data, whereas the rates from the corresponding non-CR standard versions of these generators are too low. The data can be described by the GAL model assuming a small value for the R(0) parameter in the range 0.01-0.02

    Postpartum psychiatric disorders

    Get PDF
    Pregnancy is a complex and vulnerable period that presents a number of challenges to women, including the development of postpartum psychiatric disorders (PPDs). These disorders can include postpartum depression and anxiety, which are relatively common, and the rare but more severe postpartum psychosis. In addition, other PPDs can include obsessive–compulsive disorder, post-traumatic stress disorder and eating disorders. The aetiology of PPDs is a complex interaction of psychological, social and biological factors, in addition to genetic and environmental factors. The goals of treating postpartum mental illness are reducing maternal symptoms and supporting maternal–child and family functioning. Women and their families should receive psychoeducation about the illness, including evidence-based discussions about the risks and benefits of each treatment option. Developing effective strategies in global settings that allow the delivery of targeted therapies to women with different clinical phenotypes and severities of PPDs is essential

    Measurement of W-pair production in e+ee^+ e^- collisions at 189 GeV

    Get PDF
    The production of W-pairs is analysed in a data samplecollected by ALEPH at a mean centre-of-mass energy of 188.6 GeV,corresponding to an integrated luminosity of 174.2 pb^-1. Crosssections are given for different topologies of W decays intoleptons or hadrons. Combining all final states and assumingStandard Model branching fractions, the total W-pair cross sectionis measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb.Using also the W-pair data samples collected by ALEPH at lowercentre-of-mass energies, the decay branching fraction of the W bosoninto hadrons is measured to be BR (W hadrons) = 66.97+- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of theCKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst)

    Bose-Einstein correlations in W-pair decays with an event-mixing technique

    Get PDF
    Bose-Einstein correlations in W-pair decays are studied using data collected by the ALEPH detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. The analysis is based on the comparison of WW→qq̄qq̄ events to "mixed" events constructed with the hadronic part of WW→qq̄ℓν events. The data are in agreement with the hypothesis that Bose-Einstein correlations are present only for pions from the same W decay. The JETSET model with Bose-Einstein correlations between pions from different W bosons is disfavoured

    Searches for neutral Higgs bosons in e+ee^{+}e^{-} collisions at centre-of-mass energies from 192 to 202 GeV

    Get PDF
    Searches for neutral Higgs bosons are performed with the 237 pb^-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c^2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c^2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cross section, masses below 106.4 GeV/c^2 are excluded

    Measurement of the W mass by direct reconstruction in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb1^{-1} collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: WWqqqqmW=81.30+0.47(stat.)+0.11(syst.)GeV/c2WW \to q\overline{q}q\overline{q } m_W = 81.30 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWlνqq(l=e,μ)mW=80.54+0.47(stat.)+0.11(syst.)GeV/c2WW \to l\nu q\overline{q}(l=e,\mu) m_W = 80.54 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWτνqqmW=79.56+1.08(stat.)+0.23(syst.)GeV/C62WW \to \tau\nu q\overline{q} m_W = 79.56 +- 1.08(stat.) +- 0.23(syst.) GeV/C62. The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives: mW=80.80+0.11(syst.)+0.03(LEPenergy)GeV/2m_W = 80.80 +- 0.11(syst.) +- 0.03(LEP energy) GeV/^2
    corecore