16 research outputs found

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    Ultrahigh energy neutrinos at the Pierre Auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEΜs) has become a priority in experimental astroparticle physics. UHEΜs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going Μ) or in the Earth crust (Earth-skimming Μ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEΜs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEΜs in the EeV range and above.P. Abreu ... K. B. Barber ... J. A. Bellido ... R. W. Clay ... M. J. Cooper ... B. R. Dawson ... T. A. Harrison ... A. E. Herve ... V. C. Holmes ... J. Sorokin ... P. Wahrlich ... B. J. Whelan ... et al

    Suivi et modĂ©lisation Ă  haute rĂ©solution des flux hydriques d’une toiture vĂ©gĂ©talisĂ©e

    No full text
    Green roofs are multifunctional type of Nature-Based Solutions that provide different ecosystem services among which the reduction and detention of the urban drainage outflow are the most important from the aspects of hydrology and stormwater management. As for various scientific fields, the issue of scales also appears as rather important scientific question in case of hydrology, and thus in case of green roofs. The idea behind it is to find a proper way of treating spatio-temporal variabilities of different processes involved in green roofs at larger scales, without masking heterogeneity characteristic for smaller scales. This is rather important for green roof designers, since the homogenization (averaging) in both space and time domain can impact the results of modeling significantly, providing unreliable insight into the hydrological performances of green roofs. This way, predictions of hydrological responses at larger urban (sub)catchment scales are also affected, which prevents from meeting regulation rules adopted by local authorities in charge of stormwater management.In order to improve reliability of hydrological predictions, various thorough investigations were performed on Green Wave, a green roof of the BienvenĂŒe building located close to Ecole des Ponts ParisTech, in suburban area of Paris. Firstly, different physical properties of the Green Wave substrate were measured in laboratory (specimen scale). The laboratory investigation of the hydraulic properties of the unsaturated / saturated Green Wave substrate, were carried out by means of the newly developed apparatus and the innovative methodology for determination of the hydraulic conductivity function.Furthermore, on the specimen scale, spatial variability of the soil density field obtained using X-ray CT scanner is analyzed using Universal Multifractals, a theoretical framework convenient for characterizing both spatial and temporal variabilities of different geophysical fields. As a result of the investigation, new methodology and analytical functions for describing different soil properties such as the grain / pore size distribution, water retention curve and the hydraulic conductivity function, are derived. The obtained analytical functions proved to be able to interpret rather well the experimentally determined properties of the Green Wave substrate, and other soil types taken from the literature.On the green roof scale, in-situ conditions were investigated using detailed monitoring system installed on Green Wave, where three main water balance components are measured: rainfall rate, water content indicator and drained discharge. Results showed that based on the multifractal analysis of temporal variabilities of three mentioned components, where the indicator of water content is measured by means of the network of TDR sensors distributed along the roof slope, it is possible to go beyond the standard investigation of the rainfall-runoff ration and to analyze the impact of roof inclination on the lateral water movement within the substrate. The mentioned analysis showed that the roof inclination does not affect the peak outflow, allowing development of a new one-dimensional analytical hydrological model.The proposed model is based on a cascade of non-linear reservoirs, where the leakage from each reservoir is described by means of the analytical function of hydraulic conductivity, also developed in this work. The model was proved as an adequate alternative for numerical solving of Richards equation in terms of accuracy and reliability, but also as a significant improvement from the aspect of computational efficiency. As such, it can be further used to efficiently treat spatial heterogeneity of green roofs at the scale of a single roof and larger, allowing reliable investigation of hydrological impacts of this type of Nature-Based Solutions on the urban catchment scale.Les toitures vĂ©gĂ©talisĂ©es reprĂ©sentent un type de solutions fondĂ©es sur la nature. Dans ce contexte, l’objectif de ces travaux de thĂšse est de trouver un moyen appropriĂ© de traiter les variabilitĂ©s spatio-temporelles des diffĂ©rents processus hydrologiques mis en jeu Ă  travers les Ă©chelles, sans masquer l'hĂ©tĂ©rogĂ©nĂ©itĂ© caractĂ©risant les Ă©chelles les plus fines. Ceci est important pour les concepteurs, car l'homogĂ©nĂ©isation (dans l’espace et le temps) de ces processus dans un modĂšle peut avoir un impact significatif sur ses simulations, et produire des rĂ©sultats peu fiables concernant les performances hydrologiques des toitures vĂ©gĂ©talisĂ©es. Afin d'amĂ©liorer la fiabilitĂ© des estimations rĂ©alisĂ©es Ă  l’aide d’une modĂ©lisation hydrologique, diverses investigations ont Ă©tĂ© rĂ©alisĂ©es sur la Vague Verte de Champs-sur-Marne, une toiture vĂ©gĂ©talisĂ©e d’un hectare situĂ©e Ă  proximitĂ© de l'Ecole des Ponts ParisTech, en banlieue parisienne. Tout d'abord, diffĂ©rentes caractĂ©ristiques physiques du substrat ont Ă©tĂ© mesurĂ©es en laboratoire Ă  l’échelle d'Ă©chantillons. La quantification des propriĂ©tĂ©s hydrauliques du substrat insaturĂ© / saturĂ© - et plus particuliĂšrement la dĂ©termination de la fonction de conductivitĂ© hydraulique - a Ă©tĂ© rĂ©alisĂ©e au moyen d’une mĂ©thodologie et d'un appareil nouvellement dĂ©veloppĂ©s Ă  cette occasion. A l'Ă©chelle de l'Ă©chantillon, la variabilitĂ© spatiale du champ constituĂ© par la densitĂ© du sol a Ă©tĂ© apprĂ©hendĂ©e Ă  l'aide d'un microtomographe Ă  rayons X. Les rĂ©sultats ont ensuite Ă©tĂ© analysĂ©s dans le cadre des multifractals universels, particuliĂšrement adaptĂ© pour caractĂ©riser les variabilitĂ©s spatiales et temporelles de champs gĂ©ophysiques complexes. Ces travaux ont permis de faire Ă©merger de nouvelles mĂ©thodes et fonctions analytiques pour dĂ©crire les diffĂ©rentes propriĂ©tĂ©s du sol telles que la distribution granulomĂ©trique (ainsi que celle des pores), la courbe de rĂ©tention d'eau et la fonction de conductivitĂ© hydraulique. Ces nouvelles fonctions se sont avĂ©rĂ©es assez proches de celles issues des travaux effectuĂ©s en laboratoire que ce soit pour le substrat de la vague verte, comme pour d'autres types de sols issus de la littĂ©rature. Á l'Ă©chelle de la vague verte, le comportement hydrologique de la structure a Ă©tĂ© Ă©tudiĂ© Ă  l'aide du suivi expĂ©rimental continu des trois principales composantes du bilan hydrique : la prĂ©cipitation, la teneur en eau (Ă  l’aide d’un rĂ©seau de sondes TDR rĂ©partis le long de la pente) et le dĂ©bit en sortie d’ouvrage. Ces mesures analysĂ©es Ă  l’aide d'une nouvelle analyse multifractale conduite sur la variabilitĂ© temporelle de trois composantes, ont montrĂ© qu’il est possible d'aller au-delĂ  dune simple quantification du coefficient de ruissellement et d'analyser l'impact de l'inclinaison du toit sur le mouvement latĂ©ral de l'eau Ă  l'intĂ©rieur du substrat. Il en ressort que l'inclinaison du toit n'affecte pas le transfert de l’eau dans le substrat, permettant ainsi le dĂ©veloppement d'un nouveau modĂšle hydrologique analytique unidimensionnel. Le modĂšle proposĂ© repose sur une cascade de rĂ©servoirs non linĂ©aires, oĂč la sortie de chaque rĂ©servoir est dĂ©crite au moyen d’une fonction analytique de la conductivitĂ© hydraulique (Ă©galement dĂ©veloppĂ©e lors de ces travaux). Le modĂšle s'avĂšre reprĂ©senter une alternative intĂ©ressante pour la rĂ©solution numĂ©rique de l'Ă©quation de Richards en termes de prĂ©cision et de fiabilitĂ©. Cette mĂ©thode entraine Ă©galement une amĂ©lioration significative du temps de calcul. Ce modĂšle peut ĂȘtre utilisĂ© pour tenir compte efficacement de l'hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale des toitures vĂ©gĂ©talisĂ©e Ă  l'Ă©chelle du toit. Il doit aussi permettre de tenir compte de cette variabilitĂ© dans un bassin versant urbain et d’évaluer ainsi leur impact hydrologique Ă  cette Ă©chell

    High resolution monitoring and modelling of hydrologicial fluxes in a green roof

    No full text
    Les toitures vĂ©gĂ©talisĂ©es reprĂ©sentent un type de solutions fondĂ©es sur la nature. Dans ce contexte, l’objectif de ces travaux de thĂšse est de trouver un moyen appropriĂ© de traiter les variabilitĂ©s spatio-temporelles des diffĂ©rents processus hydrologiques mis en jeu Ă  travers les Ă©chelles, sans masquer l'hĂ©tĂ©rogĂ©nĂ©itĂ© caractĂ©risant les Ă©chelles les plus fines. Ceci est important pour les concepteurs, car l'homogĂ©nĂ©isation (dans l’espace et le temps) de ces processus dans un modĂšle peut avoir un impact significatif sur ses simulations, et produire des rĂ©sultats peu fiables concernant les performances hydrologiques des toitures vĂ©gĂ©talisĂ©es. Afin d'amĂ©liorer la fiabilitĂ© des estimations rĂ©alisĂ©es Ă  l’aide d’une modĂ©lisation hydrologique, diverses investigations ont Ă©tĂ© rĂ©alisĂ©es sur la Vague Verte de Champs-sur-Marne, une toiture vĂ©gĂ©talisĂ©e d’un hectare situĂ©e Ă  proximitĂ© de l'Ecole des Ponts ParisTech, en banlieue parisienne. Tout d'abord, diffĂ©rentes caractĂ©ristiques physiques du substrat ont Ă©tĂ© mesurĂ©es en laboratoire Ă  l’échelle d'Ă©chantillons. La quantification des propriĂ©tĂ©s hydrauliques du substrat insaturĂ© / saturĂ© - et plus particuliĂšrement la dĂ©termination de la fonction de conductivitĂ© hydraulique - a Ă©tĂ© rĂ©alisĂ©e au moyen d’une mĂ©thodologie et d'un appareil nouvellement dĂ©veloppĂ©s Ă  cette occasion. A l'Ă©chelle de l'Ă©chantillon, la variabilitĂ© spatiale du champ constituĂ© par la densitĂ© du sol a Ă©tĂ© apprĂ©hendĂ©e Ă  l'aide d'un microtomographe Ă  rayons X. Les rĂ©sultats ont ensuite Ă©tĂ© analysĂ©s dans le cadre des multifractals universels, particuliĂšrement adaptĂ© pour caractĂ©riser les variabilitĂ©s spatiales et temporelles de champs gĂ©ophysiques complexes. Ces travaux ont permis de faire Ă©merger de nouvelles mĂ©thodes et fonctions analytiques pour dĂ©crire les diffĂ©rentes propriĂ©tĂ©s du sol telles que la distribution granulomĂ©trique (ainsi que celle des pores), la courbe de rĂ©tention d'eau et la fonction de conductivitĂ© hydraulique. Ces nouvelles fonctions se sont avĂ©rĂ©es assez proches de celles issues des travaux effectuĂ©s en laboratoire que ce soit pour le substrat de la vague verte, comme pour d'autres types de sols issus de la littĂ©rature. Á l'Ă©chelle de la vague verte, le comportement hydrologique de la structure a Ă©tĂ© Ă©tudiĂ© Ă  l'aide du suivi expĂ©rimental continu des trois principales composantes du bilan hydrique : la prĂ©cipitation, la teneur en eau (Ă  l’aide d’un rĂ©seau de sondes TDR rĂ©partis le long de la pente) et le dĂ©bit en sortie d’ouvrage. Ces mesures analysĂ©es Ă  l’aide d'une nouvelle analyse multifractale conduite sur la variabilitĂ© temporelle de trois composantes, ont montrĂ© qu’il est possible d'aller au-delĂ  dune simple quantification du coefficient de ruissellement et d'analyser l'impact de l'inclinaison du toit sur le mouvement latĂ©ral de l'eau Ă  l'intĂ©rieur du substrat. Il en ressort que l'inclinaison du toit n'affecte pas le transfert de l’eau dans le substrat, permettant ainsi le dĂ©veloppement d'un nouveau modĂšle hydrologique analytique unidimensionnel. Le modĂšle proposĂ© repose sur une cascade de rĂ©servoirs non linĂ©aires, oĂč la sortie de chaque rĂ©servoir est dĂ©crite au moyen d’une fonction analytique de la conductivitĂ© hydraulique (Ă©galement dĂ©veloppĂ©e lors de ces travaux). Le modĂšle s'avĂšre reprĂ©senter une alternative intĂ©ressante pour la rĂ©solution numĂ©rique de l'Ă©quation de Richards en termes de prĂ©cision et de fiabilitĂ©. Cette mĂ©thode entraine Ă©galement une amĂ©lioration significative du temps de calcul. Ce modĂšle peut ĂȘtre utilisĂ© pour tenir compte efficacement de l'hĂ©tĂ©rogĂ©nĂ©itĂ© spatiale des toitures vĂ©gĂ©talisĂ©e Ă  l'Ă©chelle du toit. Il doit aussi permettre de tenir compte de cette variabilitĂ© dans un bassin versant urbain et d’évaluer ainsi leur impact hydrologique Ă  cette Ă©chelleGreen roofs are multifunctional type of Nature-Based Solutions that provide different ecosystem services among which the reduction and detention of the urban drainage outflow are the most important from the aspects of hydrology and stormwater management. As for various scientific fields, the issue of scales also appears as rather important scientific question in case of hydrology, and thus in case of green roofs. The idea behind it is to find a proper way of treating spatio-temporal variabilities of different processes involved in green roofs at larger scales, without masking heterogeneity characteristic for smaller scales. This is rather important for green roof designers, since the homogenization (averaging) in both space and time domain can impact the results of modeling significantly, providing unreliable insight into the hydrological performances of green roofs. This way, predictions of hydrological responses at larger urban (sub)catchment scales are also affected, which prevents from meeting regulation rules adopted by local authorities in charge of stormwater management.In order to improve reliability of hydrological predictions, various thorough investigations were performed on Green Wave, a green roof of the BienvenĂŒe building located close to Ecole des Ponts ParisTech, in suburban area of Paris. Firstly, different physical properties of the Green Wave substrate were measured in laboratory (specimen scale). The laboratory investigation of the hydraulic properties of the unsaturated / saturated Green Wave substrate, were carried out by means of the newly developed apparatus and the innovative methodology for determination of the hydraulic conductivity function.Furthermore, on the specimen scale, spatial variability of the soil density field obtained using X-ray CT scanner is analyzed using Universal Multifractals, a theoretical framework convenient for characterizing both spatial and temporal variabilities of different geophysical fields. As a result of the investigation, new methodology and analytical functions for describing different soil properties such as the grain / pore size distribution, water retention curve and the hydraulic conductivity function, are derived. The obtained analytical functions proved to be able to interpret rather well the experimentally determined properties of the Green Wave substrate, and other soil types taken from the literature.On the green roof scale, in-situ conditions were investigated using detailed monitoring system installed on Green Wave, where three main water balance components are measured: rainfall rate, water content indicator and drained discharge. Results showed that based on the multifractal analysis of temporal variabilities of three mentioned components, where the indicator of water content is measured by means of the network of TDR sensors distributed along the roof slope, it is possible to go beyond the standard investigation of the rainfall-runoff ration and to analyze the impact of roof inclination on the lateral water movement within the substrate. The mentioned analysis showed that the roof inclination does not affect the peak outflow, allowing development of a new one-dimensional analytical hydrological model.The proposed model is based on a cascade of non-linear reservoirs, where the leakage from each reservoir is described by means of the analytical function of hydraulic conductivity, also developed in this work. The model was proved as an adequate alternative for numerical solving of Richards equation in terms of accuracy and reliability, but also as a significant improvement from the aspect of computational efficiency. As such, it can be further used to efficiently treat spatial heterogeneity of green roofs at the scale of a single roof and larger, allowing reliable investigation of hydrological impacts of this type of Nature-Based Solutions on the urban catchment scale

    Water retention and transfer properties of a Green roof volcanic substrate

    Get PDF
    The water retention curve and the hydraulic conductivity function of a volcanic coarse granular material used as a substrate in an urban green roof in the Paris area was carried out on a newly developed device, in which low suctions were controlled. In the same cell, a hanging column system was used for controlling smaller suctions (up to 32 kPa) and the axis translation technique for larger suctions (up to 50 kPa). Water exchanges were monitored in connected tubes by using a high accuracy differential pressure transducer. The step changes in suction were also used to determine the hydraulic conductivity function by means of Gardner’s method, accounting for the impedance effects due to the high air entry value ceramic porous disk with Kunze and Kirkham’s method. van Genuchten and Brooks and Corey models were used for the water retention curve, but the hydraulic conductivity functions derived from these expressions appeared to lead to a significant under-estimation, confirming the need of operational and simple device for the experimental determination of the hydraulic conductivity function

    Measurements of the water balance components of a large green roof in the greater Paris area

    Get PDF
    International audienceThe Blue Green Wave of Champs-sur-Marne (France) represents the largest green roof (1 ha) of the greater Paris area. The Hydrology, Meteorology and Complexity lab of École des Ponts ParisTech has chosen to convert this architectural building into a full-scale monitoring site devoted to studying the performance of green infrastructures in storm-water management. For this purpose, the relevant components of the water balance during a rainfall event have been monitored: rainfall, water content in the substrate, and the discharge flowing out of the infrastructure. Data provided by adapted measurement sensors were collected during 78 d between February and May 2018. The related raw data and a Python program transforming them into hydrological quantities and providing some preliminary elements of analysis have been made available. These measurements are useful to better understand the hydrological processes (infiltration and retention) conducting green roof performance and their spatial variability due to substrate heterogeneity. The data set is available here

    Investigation of retention and transfer properties of green roofs: the Green Wave of Champs-sur-Marne (France)

    No full text
    International audienceOne of the main performances of green roofs is to reduce and/or delay urban runoff during the strong rainfall events.The substrate retention capacity and transfer properties is often described by the water retention and hydraulicconductivity curves. This work presents comparison between measured and different theoretical characteristicscurves, as well as determination of more reliable fractal based substrate model.Firstly, samples of organic volcanic substrate from wavy-form green roof of Champs-sur-Marne (France), calledthe Green Wave, were taken for detailed laboratory investigation. In order to simultaneously determine waterretention and hydraulic conductivity curves of this unconventional substrate, special device based on tensiometryand axis translation technique has been designed (Stanic et al, 2018). Then different (semi-)empirical and fractalbased theoretical curves were compared with results obtained in laboratory in order to determine the model thatrealistically describes green roof substrate’s characteristics curves. Models based on (multi-)fractal theory areproved to be able to describe characteristics curves by calibrating several physically based parameters. It wasshown that these models are able to fit better with water retention and hydraulic conductivity curves of the greenroof substrate than the common (semi-)empirical models.At the end we discuss why this kind of approach is very helpful for giving insight into the accuracy of theoreticalcurves in general, regarding both substrate characteristics curves. Also it gives an idea about the most realistictheoretical model, which is a very useful indicator for users and developers of rainfall-runoff models in widercontext. Indeed, taking into account the most accurate option to describe substrate characteristics curves will resultin more reliable runoff estimations
    corecore