90 research outputs found

    ORTHOPEDIC JOINT STABILITY INFLUENCES GROWTH AND MAXILLARY DEVELOPMENT: CLINICAL ASPECTS

    Get PDF
    Orthopedic temporomandibular joint (TMJ) instability is very common among children and adults. It is often associated with pain in the cervicofacial region, and muscle contraction. To investigate whether muscle contraction can cause permanent posterior rotation of the head and whether treatment with splint and kinetotherapy is efficient, a literature review was carried out of patients with pain in the cervicofacial area. Additionally, the case of a 15-year old patient presenting with permanent posterior rotation of cranium, with no movement between the first two vertebra and pain in the cervicofacial area was reported. Kinetotherapy followed by rapid maxillary expansion improved the function of cervical vertebrae and reduced the cervicofacial pain within the first two weeks. Kinetotherapy, rapid maxillary expansion, and orthodontic treatment with a stable joint position could be a good therapy to control occipital-atlas function

    The transformation of the forest steppe in the lower Danube Plain of south-eastern Europe : 6000 years of vegetation and land use dynamics

    Get PDF
    Forest steppes are dynamic ecosystems, highly susceptible to changes in climate and land use. Here we examine the Holocene history of the European forest steppe ecotone in the Lower Danube Plain to better understand its sensitivity to climate fluctuations and human impact, and the timing of its transition into a cultural forest steppe. We used multi-proxy analyses (pollen, n-alkane, coprophilous fungi, charcoal, and geochemistry) of a 6000-year sequence from Lake Oltina (SE Romania), combined with a REVEALS model of quantitative vegetation cover. We found the greatest tree cover, composed of xerothermic (Carpinus orientalis and Quercus) and temperate (Carpinus betulus, Tilia, Ulmus and Fraxinus) tree taxa between 6000 and 2500 cal yr BP. Maximum tree cover (~ 50 %) occurred between 4200 and 2500 cal yr BP at a time of wetter climatic conditions. Compared to other European forest steppe areas, the dominance of Carpinus orientalis represents the most distinct feature of the woodland's composition during that time. Forest loss was under way by 2500 yr BP (Iron Age) with REVEALS estimates indicating a fall to ~ 20 % tree cover from the mid-Holocene forest maximum linked to clearance for agriculture, while climate conditions remained wet. Biomass burning increased markedly at 2500 cal yr BP suggesting that fire was regularly used as a management tool until 1000 cal yr BP when woody vegetation became scarce. A sparse tree cover, with only weak signs of forest recovery, then became a permanent characteristic of the Lower Danube Plain, highlighting recurring anthropogenic pressure. The timing of anthropogenic ecosystem transformation here (2500 cal yr BP) was in between that in central eastern (between 3700 and 3000 cal yr BP) and eastern (after 2000 cal yr BP) Europe. Our study is the first quantitative land cover estimate at the forest steppe ecotone in south eastern Europe spanning 6000 years and provides critical empirical evidence that the present-day forest steppe/woodlands reflects the potential natural vegetation in this region under current climate conditions. This study also highlights the potential of n-alkane indices for vegetation reconstruction, particularly in dry regions where pollen is poorly preserved

    Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons

    Get PDF
    The location, timing, spatial extent, and frequency of wildfires are changing rapidly in many parts of the world, producing substantial impacts on ecosystems, people, and potentially climate. Paleofire records based on charcoal accumulation in sediments enable modern changes in biomass burning to be considered in their long-term context. Paleofire records also provide insights into the causes and impacts of past wildfires and emissions when analyzed in conjunction with other paleoenvironmental data and with fire models. Here we present new 1000 year and 22 000 year trends and gridded biomass burning reconstructions based on the Global Charcoal Database version 3, which includes 736 charcoal records (57 more than in version 2). The new gridded reconstructions reveal the spatial patterns underlying the temporal trends in the data, allowing insights into likely controls on biomass burning at regional to global scales. In the most recent few decades, biomass burning has sharply increased in both hemispheres, but especially in the north, where charcoal fluxes are now higher than at any other time during the past 22 000 {years}. We also discuss methodological issues relevant to data-model comparisons, and identify areas for future research. Spatially gridded versions of the global dataset from GCDv3 are provided to facilitate comparison with and validation of global fire simulations

    Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images

    Get PDF
    Traditional farming landscapes in the temperate zone that have persisted for millennia can be exceptionally species-rich and are therefore key conservation targets. In contrast to Europe’s West, Eastern Europe harbours widespread traditional farming landscapes, but drastic socio-economic and political changes in the twentieth century are likely to have impacted these landscapes profoundly. We reconstructed long-term land-use/cover and biodiversity changes over the last 150 years in a traditional farming landscape of outstanding species diversity in Transylvania. We used the Regional Estimates of Vegetation Abundance from Large Sites model applied to a pollen record from the Transylvanian Plain and a suite of historical and satellite-based maps. We documented widespread changes in the extent and location of grassland and cropland, a loss of wood pastures as well as a gradual increase in forest extent. Land management in the socialist period (1947–1989) led to grassland expansion, but grassland diversity decreased due to intensive production. Land-use intensity has declined since the collapse of socialism in 1989, resulting in widespread cropland abandonment and conversion to grassland. However, these trends may be temporary due to both ongoing woody encroachment as well as grassland management intensification in productive areas. Remarkably, only 8% of all grasslands existed throughout the entire time period (1860–2010), highlighting the importance of land-use history when identifying target areas for conservation, given that old-growth grasslands are most valuable in terms of biodiversity. Combining datasets from different disciplines can yield important additional insights into dynamic landscape and biodiversity changes, informing conservation actions to maintain these species-rich landscapes in the longer term

    Early anthropogenic transformation of the Danube-Black Sea system

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 2 (2012): 582, doi:10.1038/srep00582.Over the last century humans have altered the export of fluvial materials leading to significant changes in morphology, chemistry, and biology of the coastal ocean. Here we present sedimentary, paleoenvironmental and paleogenetic evidence to show that the Black Sea, a nearly enclosed marine basin, was affected by land use long before the changes of the Industrial Era. Although watershed hydroclimate was spatially and temporally variable over the last ~3000 years, surface salinity dropped systematically in the Black Sea. Sediment loads delivered by Danube River, the main tributary of the Black Sea, significantly increased as land use intensified in the last two millennia, which led to a rapid expansion of its delta. Lastly, proliferation of diatoms and dinoflagellates over the last five to six centuries, when intensive deforestation occurred in Eastern Europe, points to an anthropogenic pulse of river-borne nutrients that radically transformed the food web structure in the Black Sea.This study was supported by grants OISE 0637108, EAR 0952146, OCE 0602423 and OCE 0825020 from the National Science Foundation and grants from the Woods Hole Oceanographic Institution

    Recent climate change has driven divergent hydrological shifts in high-latitude peatlands

    Get PDF
    A recent synthesis study found 54% of the high-latitude peatlands have been drying and 32% have been wetting over the past centuries, illustrating their complex ecohydrological dynamics and highly uncertain responses to a warming climate. High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.Peer reviewe

    Hydrology in the Sea of Marmara during the last 23 ka : implications for timing of Black Sea connections and sapropel deposition

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA1205, doi:10.1029/2009PA001735.Sediments deposited under lacustrine and marine conditions in the Sea of Marmara hold a Late Quaternary record for water exchange between the Black Sea and the Mediterranean Sea. Here we report a multiproxy data set based on oxygen and strontium isotope results obtained from carbonate shells, major and trace elements, and specific organic biomarker measurements, as well as a micropaleontological study from a 14C-dated sediment core retrieved from the Sea of Marmara. Pronounced changes occurred in Ύ18O and 87Sr/86Sr values at the fresh and marine water transition, providing additional information in relation to micropaleontological data. Organic biomarker concentrations documented the marine origin of the sapropelic layer while changes in n-alkane concentrations clearly indicated an enhanced contribution for organic matter of terrestrial origin before and after the event. When compared with the Black Sea record, the results suggest that the Black Sea was outflowing to the Sea of Marmara from the Last Glacial Maximum until the warmer BÞlling-AllerÞd. The first marine incursion in the Sea of Marmara occurred at 14.7 cal ka B.P. However, salinification of the basin was gradual, indicating that Black Sea freshwaters were still contributing to the Marmara seawater budget. After the Younger Dryas (which is associated with a high input of organic matter of terrestrial origin) both basins were disconnected, resulting in a salinity increase in the Sea of Marmara. The deposition of organic-rich sapropel that followed was mainly related to enhanced primary productivity characterized by a reorganization of the phytoplankton population.We acknowledge support from INSU and the French Polar Institute IPEV

    Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe

    Get PDF
    Wildfire occurrence is influenced by climate, vegetation and human activities. A key challenge for understanding the risk of fires is quantifying the mediating effect of vegetation on fire regimes. Here, we explore the relative importance of Holocene land cover, land use, dominant functional forest type, and climate dynamics on biomass burning in temperate and boreo-nemoral regions of central and eastern Europe over the past 12 kyr. We used an extensive data set of Holocene pollen and sedimentary charcoal records, in combination with climate simulations and statistical modelling. Biomass burning was highest during the early Holocene and lowest during the mid-Holocene in all three ecoregions (Atlantic, continental and boreo-nemoral) but was more spatially variable over the past 3–4 kyr. Although climate explained a significant variance in biomass burning during the early Holocene, tree cover was consistently the highest predictor of past biomass burning over the past 8 kyr. In temperate forests, biomass burning was high at ~ 45% tree cover and decreased to a minimum at between 60% and 70% tree cover. In needleleaf-dominated forests, biomass burning was highest at ~60 %–65%tree cover and steeply declined at > 65% tree cover. Biomass burning also increased when arable lands and grasslands reached ~15 %–20 %, although this relationship was variable depending on land use practice via ignition sources, fuel type and quantities. Higher tree cover reduced the amount of solar radiation reaching the forest floor and could provide moister, more wind-protected microclimates underneath canopies, thereby decreasing fuel flammability. Tree cover at which biomass burning increased appears to be driven by warmer and drier summer conditions during the early Holocene and by increasing human influence on land cover during the late Holocene. We suggest that longterm fire hazard may be effectively reduced through land cover management, given that land cover has controlled fire regimes under the dynamic climates of the Holocene

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a CiĂȘncia e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, RĂ©gion Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe
    • 

    corecore