74 research outputs found
The abundance of Bullet-groups in LCDM
We estimate the expected distribution of displacements between the two
dominant dark matter (DM) peaks (DM-DM displacements) and between DM and
gaseous baryon peak (DM-gas displacements) in dark matter halos with masses
larger than Msun/h. We use as a benchmark the observation of SL2S
J08544-0121, which is the lowest mass system ( Msun/h)
observed so far featuring a bi-modal dark matter distribution with a dislocated
gas component. We find that % of the dark matter halos with
circular velocities in the range 300 km/s to 700 km/s (groups) show DM-DM
displacements equal or larger than kpc/h as observed in SL2S
J08544-0121. For dark matter halos with circular velocities larger than 700
km/s (clusters) this fraction rises to 70 10%. Using the same simulation
we estimate the DM-gas displacements and find that 0.1 to 1.0% of the groups
should present separations equal or larger than kpc/h corresponding
to our observational benchmark; for clusters this fraction rises to (7
3)%, consistent with previous studies of dark matter to baryon separations.
Considering both constraints on the DM-DM and DM-gas displacements we find that
the number density of groups similar to SL2S J08544-0121 is Mpc, three times larger than the estimated value for clusters.
These results open up the possibility for a new statistical test of LCDM by
looking for DM-gas displacements in low mass clusters and groups.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter
Chemical abundances and ages of the bulge stars in APOGEE high-velocity peaks
A cold high-velocity (HV, 200 km/s) peak was first reported in several
Galactic bulge fields based on the APOGEE commissioning observations. Both the
existence and the nature of the high-velocity peak are still under debate. Here
we revisit this feature with the latest APOGEE DR13 data. We find that most of
the low latitude bulge fields display a skewed Gaussian distribution with a HV
shoulder. However, only 3 out of 53 fields show distinct high-velocity peaks
around 200 km/s. The velocity distribution can be well described by
Gauss-Hermite polynomials, except the three fields showing clear HV peaks. We
find that the correlation between the skewness parameter () and the mean
velocity (), instead of a distinctive HV peak, is a strong indicator
of the bar. It was recently suggested that the HV peak is composed of
preferentially young stars. We choose three fields showing clear HV peaks to
test this hypothesis using the metallicity, [/M] and [C/N] as age
proxies. We find that both young and old stars show HV features. The similarity
between the chemical abundances of stars in the HV peaks and the main component
indicates that they are not systematically different in terms of chemical
abundance or age. In contrast, there are clear differences in chemical space
between stars in the Sagittarius dwarf and the bulge stars. The strong HV peaks
off-plane are still to be explained properly, and could be different in nature.Comment: 13 pages, 10 figures, published in ApJ. Updated to match the final
ApJ published version. Minor revisions to the text and Figure
New VVV Survey Globular Cluster Candidates in the Milky Way Bulge
© 2017 The American Astronomical Society. All rights reserved.It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the VĂa LĂĄctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color-magnitude diagrams. We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A Ks < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color-magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.Peer reviewedFinal Accepted Versio
Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code â II. The Southern clusters and overview
We investigate the Fe, C, N, O, Mg, Al, Si, K, Ca, Ce, and Nd abundances of 2283 red giant stars in 31 globular clusters from high-resolution spectra observed in both the Northern and Southern hemisphere by the SDSS-IV APOGEE-2 survey. This unprecedented homogeneous data set, largest to date, allows us to discuss the intrinsic Fe spread, the shape, and statistics of Al-Mg and N-C anti-correlations as a function of cluster mass, luminosity, age, and metallicity for all 31 clusters. We find that the Fe spread does not depend on these parameters within our uncertainties including cluster metallicity, contradicting earlier observations. We do not confirm the metallicity variations previously observed in M22 and NGC 1851. Some clusters show a bimodal Al distribution, while others exhibit a continuous distribution as has been previously reported in the literature. We confirm more than two populations in Ï Cen and NGC 6752, and find new ones in M79. We discuss the scatter of Al by implementing a correction to the standard chemical evolution of Al in the Milky Way. After correction, its dependence on cluster mass is increased suggesting that the extent of Al enrichment as a function of mass was suppressed before the correction. We observe a turnover in the Mg-Al anticorrelation at very low Mg in Ï Cen, similar to the pattern previously reported in M15 and M92. Ï Cen may also have a weak K-Mg anticorrelation, and if confirmed, it would be only the third cluster known to show such a pattern
Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns
We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] gsim â1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution
The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and HÎČ reverberation measurements from first-year spectroscopy and photometry
Funding: UK Sciences and Technology Facilities Council STFC grant ST/M001296/1 (KH).We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad HÎČ emission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 HÎČ and 13 Hα lags with JAVELIN, 42 HÎČ and 17 Hα lags with CREAM, and 16 HÎČ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our HÎČ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hα emission is consistent with or slightly longer than that of HÎČ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local â relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z < 0.3).PostprintPeer reviewe
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Abundance analysis of APOGEE spectra for 58 metal-poor stars from the bulge spheroid
The central part of the Galaxy hosts a multitude of stellar populations, including the spheroidal bulge stars, stars moved to the bulge through secular evolution of the bar, inner halo, inner thick disc, inner thin disc, as well as debris from past accretion events. We identified a sample of 58 candidate stars belonging to the stellar population of the spheroidal bulge, and analyse their abundances. The present calculations of Mg, Ca, and Si lines are in agreement with the ASPCAP abundances, whereas abundances of C, N, O, and Ce are re-examined. We find normal α-element enhancements in oxygen, similar to magnesium, Si, and Ca abundances, which are typical of other bulge stars surveyed in the optical in Baadeâs Window. The enhancement of [O/Fe] in these stars suggests that they do not belong to accreted debris. No spread in N abundances is found, and none of the sample stars is N-rich, indicating that these stars are not second generation stars originated in globular clusters. Ce instead is enhanced in the sample stars, which points to an s-process origin such as due to enrichment from early generations of massive fast rotating stars, the so-called spinstars
- âŠ