A cold high-velocity (HV, ∼ 200 km/s) peak was first reported in several
Galactic bulge fields based on the APOGEE commissioning observations. Both the
existence and the nature of the high-velocity peak are still under debate. Here
we revisit this feature with the latest APOGEE DR13 data. We find that most of
the low latitude bulge fields display a skewed Gaussian distribution with a HV
shoulder. However, only 3 out of 53 fields show distinct high-velocity peaks
around 200 km/s. The velocity distribution can be well described by
Gauss-Hermite polynomials, except the three fields showing clear HV peaks. We
find that the correlation between the skewness parameter (h3) and the mean
velocity (vˉ), instead of a distinctive HV peak, is a strong indicator
of the bar. It was recently suggested that the HV peak is composed of
preferentially young stars. We choose three fields showing clear HV peaks to
test this hypothesis using the metallicity, [α/M] and [C/N] as age
proxies. We find that both young and old stars show HV features. The similarity
between the chemical abundances of stars in the HV peaks and the main component
indicates that they are not systematically different in terms of chemical
abundance or age. In contrast, there are clear differences in chemical space
between stars in the Sagittarius dwarf and the bulge stars. The strong HV peaks
off-plane are still to be explained properly, and could be different in nature.Comment: 13 pages, 10 figures, published in ApJ. Updated to match the final
ApJ published version. Minor revisions to the text and Figure