1,333 research outputs found
Publishing and sharing multi-dimensional image data with OMERO
Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMEROâs Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org
Prospective, Early Longitudinal Assessment of Lymphedema-Related Quality of Life Among Patients With Locally Advanced Breast Cancer: The Foundation for Building a Patient-Centered Screening Program
BACKGROUND: We examined how breast cancer-related lymphedema (BCRL) affects health-related quality of life (HRQOL), productivity, and compliance with therapeutic interventions to guide structuring BCRL screening programs.
METHODS: We prospectively followed consecutive breast cancer patients who underwent axillary lymph node dissection (ALND) with arm volume screening and measures assessing patient-reported health-related quality of life (HRQOL) and perceptions of BCRL care. Comparisons by BCRL status were made with Mann-Whitney U, Chi-square, Fisher\u27s exact, or t tests. Trends over time from ALND were assessed with linear mixed-effects models.
RESULTS: With a median follow-up of 8 months in 247 patients, 46% self-reported ever having BCRL, a proportion that increased over time. About 73% reported fear of BCRL, which was stable over time. Further in time from ALND, patients were more likely to report that BCRL screening reduced fear. Patient-reported BCRL was associated with higher soft tissue sensation intensity, biobehavioral, and resource concerns, absenteeism, and work/activity impairment. Objectively measured BCRL had fewer associations with outcomes. Most patients reported performing prevention exercises, but compliance decreased over time; patient-reported BCRL was not associated with exercise frequency. Fear of BCRL was positively associated with performing prevention exercises and using compressive garments.
CONCLUSIONS: Both incidence and fear of BCRL were high after ALND for breast cancer. Fear was associated with improved therapeutic compliance, but compliance decreased over time. Patient-reported BCRL was more strongly associated with worse HRQOL and productivity than was objective BCRL. Screening programs must support patients\u27 psychological needs and aim to sustain long-term compliance with recommended interventions
Nuclear Localization of Huntingtin mRNA Is Specific to Cells of Neuronal Origin
Huntington\u27s disease (HD) is a monogenic neurodegenerative disorder representing an ideal candidate for gene silencing with oligonucleotide therapeutics (i.e., antisense oligonucleotides [ASOs] and small interfering RNAs [siRNAs]). Using an ultra-sensitive branched fluorescence in situ hybridization (FISH) method, we show that approximately 50% of wild-type HTT mRNA localizes to the nucleus and that its nuclear localization is observed only in neuronal cells. In mouse brain sections, we detect Htt mRNA predominantly in neurons, with a wide range of Htt foci observed per cell. We further show that siRNAs and ASOs efficiently eliminate cytoplasmic HTT mRNA and HTT protein, but only ASOs induce a partial but significant reduction of nuclear HTT mRNA. We speculate that, like other mRNAs, HTT mRNA subcellular localization might play a role in important neuronal regulatory mechanisms
Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting
This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers
Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 Ă 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression
Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy
Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy
Epidemics and the Politics of Knowledge: Contested Narratives in Egypt's H1N1 Response
This article explores the politics of knowledge involved in understanding and responding to epidemics in an era of global health governance and biosecurity. It develops and applies an approach focused on how multiple, competing narratives about epidemics are constructed, mobilised and interact, and selectively justify pathways of intervention and response. A detailed ethnographic case study of national and local responses to H1N1 influenza, so-called âswine fluâ, in Egypt reveals how global narratives were reworked by powerful actors in a particular political context, suppressing and delegitimizing the alternative narratives of the Zabaleen (Coptic Christian) people whose lives and livelihoods centred on raising pigs and working with them to control urban waste. The case study illustrates important ways in which geographies and politics of blame around epidemics emerge and are justified, their political contexts and consequences, and how they may feed back to shape the dynamics of disease itself.ESR
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
- âŠ