409 research outputs found

    Risk of chronic kidney disease after cancer nephrectomy.

    Get PDF
    The incidence of early stage renal cell carcinoma (RCC) is increasing and observational studies have shown equivalent oncological outcomes of partial versus radical nephrectomy for stage I tumours. Population studies suggest that compared with radical nephrectomy, partial nephrectomy is associated with decreased mortality and a lower rate of postoperative decline in kidney function. However, rates of chronic kidney disease (CKD) in patients who have undergone nephrectomy might be higher than in the general population. The risks of new-onset or accelerated CKD and worsened survival after nephrectomy might be linked, as kidney insufficiency is a risk factor for cardiovascular disease and mortality. Nephron-sparing approaches have, therefore, been proposed as the standard of care for patients with type 1a tumours and as a viable option for those with type 1b tumours. However, prospective data on the incidence of de novo and accelerated CKD after cancer nephrectomy is lacking, and the only randomized trial to date was closed prematurely. Intrinsic abnormalities in non-neoplastic kidney parenchyma and comorbid conditions (including diabetes mellitus and hypertension) might increase the risks of CKD and RCC. More research is needed to better understand the risk of CKD post-nephrectomy, to develop and validate predictive scores for risk-stratification, and to optimize patient management

    Constrained Probabilistic Continuous Review Inventory System with Mixture Shortage and Stochastic Lead Time Demand

    Get PDF
    This paper derives the probabilistic continuous review backorders and lost sales inventory system when the order cost is a function of the order quantity. Our objective is to minimize the expected annual total cost under a restriction on the expected annual holding cost when the lead time demand follows some continuous distributions by using the Lagrangian method. Some published special cases are deduced and an illustrative numerical example with some graphs is added

    Irreducible Locked Symphysis Pubis Disruption Caused by Incarcerated Urinary Bladder in a 14-year-Old Boy, a Case Report and Review of the Literature

    Get PDF
    Ali Fergany,1 Ahmed A Khalifa,2 Faisal A Mokhtar,3 Osama Farouk1 1Orthopaedic Department, Assiut University Trauma Hospital, Assiut, Egypt; 2Orthopaedic Department, Qena faculty of medicine and University Hospital at South Valley University, Qena, Egypt; 3Orthopedic Department, Faculty of Medicine for Boys at Al Azhar University, Cairo, EgyptCorrespondence: Ahmed A Khalifa, Email [email protected]: Urinary bladder entrapment or incarceration within pelvic fracture have been described in many reports in the literature, most of which were reported in adult patients. We describe a case of a 14-year-old boy presented with isolated locked symphysis pubis disruption after falling from a height. His initial evaluation was negative for any other associated injuries. The decision was made to treat him surgically by open reduction and internal fixation using a symphyseal plate; however, upon completing the Pfannenstiel incision, the surgeon faced a soft tissue mass hindering bony fragment dissection; upon careful examination, the soft tissue mass turned out to be entrapped urinary bladder within the symphyseal disruption. After careful soft tissue dissection, and with the help of Jungbluth distractor, the disruption was over-distracted, the bladder was freed entirely (which was intact) and reduced to its position, followed by the application of a symphyseal plate in a reduced symphysis pubis position. The patient did well postoperatively, and at three months follow up, the disruption and fracture united, and there were no urinary-related symptoms. Although rare, urinary bladder entrapment within an element of anterior pelvic fracture could be a reason for the difficult reduction; careful evaluation and steady soft tissue dissection are paramount for avoiding undue iatrogenic urinary bladder injury.Keywords: pediatric pelvic fracture, bladder entrapment, case repor

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into 'Piel de Sapo' Melon (Cucucumis melo L.)

    Get PDF
    A mapping F-2 population from the cross 'Piel de Sapo' x PI124112 was selectively genotyped to study the genetic control of morphological fruit traits by QTL (Quantitative Trait Loci) analysis. Ten QTL were identified, five for FL (Fruit Length), two for FD (Fruit Diameter) and three for FS (Fruit Shape). At least one robust QTL per character was found, flqs8.1 (LOD = 16.85, R-2 = 34%), fdqs12.1 (LOD = 3.47, R-2 = 11%) and fsqs8.1 (LOD = 14.85, R-2 = 41%). flqs2.1 and fsqs2.1 cosegregate with gene a (andromonoecious), responsible for flower sex determination and with pleiotropic effects on FS. They display a positive additive effect (a) value, so the PI124112 allele causes an increase in FL and FS, producing more elongated fruits. Conversely, the negative a value for flqs8.1 and fsqs8.1 indicates a decrease in FL and FS, what results in rounder fruits, even if PI124112 produces very elongated melons. This is explained by a significant epistatic interaction between fsqs2.1 and fsqs8.1, where the effects of the alleles at locus a are attenuated by the additive PI124112 allele at fsqs8.1. Roundest fruits are produced by homozygous for PI124112 at fsqs8.1 that do not carry any dominant A allele at locus a (PiPiaa). A significant interaction between fsqs8.1 and fsqs12.1 was also detected, with the alleles at fsqs12.1 producing more elongated fruits. fsqs8.1 seems to be allelic to QTL discovered in other populations where the exotic alleles produce elongated fruits. This model has been validated in assays with backcross lines along 3 years and ultimately obtaining a fsqs8.1-NIL (Near Isogenic Line) in 'Piel de Sapo' background which yields round melons.This work was supported by grants AGL2009-12698-C02-02 and AGL2012-40130-C02-02 from the Spanish Ministry of Economy and Competitiveness to AJM. AD was supported by a JAE-Doc contract from CSIC, MF by a Postdoctoral contract from GRAG, IE by a fellowship from the former Spanish Ministry of Education and BZ by a fellowship from Instituto Agronomico Mediterraneo de Zaragoza (IAMZ), Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Díaz Bermúdez, A.; Zarouri, B.; Fergany, M.; Eduardo, I.; Álvarez, JA.; Picó Sirvent, MB.; Monforte Gilabert, AJ. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into 'Piel de Sapo' Melon (Cucucumis melo L.). PLoS ONE. 9(8):104188-104188. https://doi.org/10.1371/journal.pone.0104188S10418810418898FAO (2014) Food and Agricultural Organization of the United Nations: FAOSTAT http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/EFerguson, A. R. (1999). KIWIFRUIT CULTIVARS: BREEDING AND SELECTION. Acta Horticulturae, (498), 43-52. doi:10.17660/actahortic.1999.498.4Butelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26(11), 1301-1308. doi:10.1038/nbt.1506Stepansky, A., Kovalski, I., & Perl-Treves, R. (1999). Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematics and Evolution, 217(3-4), 313-332. doi:10.1007/bf00984373José, M. A., Iban, E., Silvia, A., & Pere, A. (2005). Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance. Euphytica, 144(1-2), 31-38. doi:10.1007/s10681-005-0201-yPitrat M (2008) Melon. In: Prohens J, Nuez F, editors. Handbook of Plant Breeding, vol Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Heidelberg: Springer, pp. 283–315.Roy, A., Bal, S. S., Fergany, M., Kaur, S., Singh, H., Malik, A. A., … Dhillon, N. P. S. (2011). Wild melon diversity in India (Punjab State). Genetic Resources and Crop Evolution, 59(5), 755-767. doi:10.1007/s10722-011-9716-3Monforte, A. J., Garcia-Mas, J., & Arus, P. (2003). Genetic variability in melon based on microsatellite variation. Plant Breeding, 122(2), 153-157. doi:10.1046/j.1439-0523.2003.00848.xEsteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., … Bendahmane, A. (2008). A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 321(5890), 836-838. doi:10.1126/science.1159023C., P., L., H., N., G., D., B., C., D., & M., P. (2002). Genetic control of fruit shape acts prior to anthesis in melon ( Cucumis melo L.). Molecular Genetics and Genomics, 266(6), 933-941. doi:10.1007/s00438-001-0612-yMonforte, A. J., Oliver, M., Gonzalo, M. J., Alvarez, J. M., Dolcet-Sanjuan, R., & Arús, P. (2003). Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics, 108(4), 750-758. doi:10.1007/s00122-003-1483-xEduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., … van der Knaap, E. (2007). Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. doi:10.21273/jashs.132.1.80Paris, M. K., Zalapa, J. E., McCreight, J. D., & Staub, J. E. (2008). Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Molecular Breeding, 22(3), 405-419. doi:10.1007/s11032-008-9185-3Fernández-Silva, I., Moreno, E., Eduardo, I., Arús, P., Álvarez, J. M., & Monforte, A. J. (2008). On the Genetic Control of Heterosis for Fruit Shape in Melon (Cucumis Melo L.). Journal of Heredity, 100(2), 229-235. doi:10.1093/jhered/esn075Fernandez-Silva, I., Moreno, E., Essafi, A., Fergany, M., Garcia-Mas, J., Martín-Hernandez, A. M., … Monforte, A. J. (2010). Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theoretical and Applied Genetics, 121(5), 931-940. doi:10.1007/s00122-010-1361-2Tomason, Y., Nimmakayala, P., Levi, A., & Reddy, U. K. (2013). Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Molecular Breeding, 31(4), 829-841. doi:10.1007/s11032-013-9837-9Syvänen, A.-C. (2001). Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12), 930-942. doi:10.1038/35103535Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499-510. doi:10.1038/nrg3012Fridman, E., Pleban, T., & Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9), 4718-4723. doi:10.1073/pnas.97.9.4718Frary, A. (2000). fw2.2: A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science, 289(5476), 85-88. doi:10.1126/science.289.5476.85Liu, J., Van Eck, J., Cong, B., & Tanksley, S. D. (2002). A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences, 99(20), 13302-13306. doi:10.1073/pnas.162485999Cong, B., Barrero, L. S., & Tanksley, S. D. (2008). Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40(6), 800-804. doi:10.1038/ng.144Xiao, H., Jiang, N., Schaffner, E., Stockinger, E. J., & van der Knaap, E. (2008). A Retrotransposon-Mediated Gene Duplication Underlies Morphological Variation of Tomato Fruit. Science, 319(5869), 1527-1530. doi:10.1126/science.1153040Li, C. (2006). Rice Domestication by Reducing Shattering. Science, 311(5769), 1936-1939. doi:10.1126/science.1123604Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., … Sasaki, T. (2000). Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. The Plant Cell, 12(12), 2473-2483. doi:10.1105/tpc.12.12.2473Takahashi, Y., Shomura, A., Sasaki, T., & Yano, M. (2001). Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the   subunit of protein kinase CK2. Proceedings of the National Academy of Sciences, 98(14), 7922-7927. doi:10.1073/pnas.111136798Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., & Yano, M. (2002). Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions. Plant and Cell Physiology, 43(10), 1096-1105. doi:10.1093/pcp/pcf156Doi, K. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 18(8), 926-936. doi:10.1101/gad.1189604Doebley, J., Stec, A., & Hubbard, L. (1997). The evolution of apical dominance in maize. Nature, 386(6624), 485-488. doi:10.1038/386485a0Thornsberry, J. M., Goodman, M. M., Doebley, J., Kresovich, S., Nielsen, D., & Buckler, E. S. (2001). Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 28(3), 286-289. doi:10.1038/90135Salvi, S., Sponza, G., Morgante, M., Tomes, D., Niu, X., Fengler, K. A., … Tuberosa, R. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of the National Academy of Sciences, 104(27), 11376-11381. doi:10.1073/pnas.0704145104Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney R, Tuberosa R, editors. Genomics-assisted crop improvement, vol 1. Netherlands: Springer, pp. 207–225.Alonso-Blanco, C., Aarts, M. G. M., Bentsink, L., Keurentjes, J. J. B., Reymond, M., Vreugdenhil, D., & Koornneef, M. (2009). What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation? The Plant Cell, 21(7), 1877-1896. doi:10.1105/tpc.109.068114Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-yVegas, J., Garcia-Mas, J., & Monforte, A. J. (2013). Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theoretical and Applied Genetics, 126(6), 1531-1544. doi:10.1007/s00122-013-2071-3Essafi, A., Díaz-Pendón, J. A., Moriones, E., Monforte, A. J., Garcia-Mas, J., & Martín-Hernández, A. M. (2008). Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theoretical and Applied Genetics, 118(2), 275-284. doi:10.1007/s00122-008-0897-xHayden, M. J., Nguyen, T. M., Waterman, A., & Chalmers, K. J. (2008). Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics, 9(1), 80. doi:10.1186/1471-2164-9-80Deleu, W., Esteras, C., Roig, C., González-To, M., Fernández-Silva, I., Gonzalez-Ibeas, D., … Garcia-Mas, J. (2009). A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 9(1), 90. doi:10.1186/1471-2229-9-90Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3KOSAMBI, D. D. (1943). THE ESTIMATION OF MAP DISTANCES FROM RECOMBINATION VALUES. Annals of Eugenics, 12(1), 172-175. doi:10.1111/j.1469-1809.1943.tb02321.xVoorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 90(23), 10972-10976. doi:10.1073/pnas.90.23.10972Diaz, A., Fergany, M., Formisano, G., Ziarsolo, P., Blanca, J., Fei, Z., … Monforte, A. J. (2011). A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology, 11(1), 111. doi:10.1186/1471-2229-11-111Noguera, F. J., Capel, J., Alvarez, J. I., & Lozano, R. (2005). Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theoretical and Applied Genetics, 110(4), 714-720. doi:10.1007/s00122-004-1897-0Esteras, C., Gomez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., … Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. doi:10.1186/1471-2164-13-80Kenigsbuch, D., & Cohen, Y. (1990). The inheritance of gynoecy in muskmelon. Genome, 33(3), 317-320. doi:10.1139/g90-049Marguerit, E., Boury, C., Manicki, A., Donnart, M., Butterlin, G., Némorin, A., … Decroocq, S. (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics, 118(7), 1261-1278. doi:10.1007/s00122-009-0979-4Monforte AJ, Díaz A, Caño-Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot (online).Harel-Beja, R., Tzuri, G., Portnoy, V., Lotan-Pompan, M., Lev, S., Cohen, S., … Katzir, N. (2010). A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 121(3), 511-533. doi:10.1007/s00122-010-1327-4Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis of se2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558Khavkin, E., & Coe, E. H. (1997). Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theoretical and Applied Genetics, 95(3), 343-352. doi:10.1007/s001220050569TUBEROSA, R. (2002). Mapping QTLs Regulating Morpho-physiological Traits and Yield: Case Studies, Shortcomings and Perspectives in Drought-stressed Maize. Annals of Botany, 89(7), 941-963. doi:10.1093/aob/mcf134Yuan, X. J., Pan, J. S., Cai, R., Guan, Y., Liu, L. Z., Zhang, W. W., … Zhu, L. H. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 164(2), 473-491. doi:10.1007/s10681-008-9722-5Li, D., Cuevas, H. E., Yang, L., Li, Y., Garcia-Mas, J., Zalapa, J., … Weng, Y. (2011). Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-396Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109Fazio, G., Staub, J. E., & Stevens, M. R. (2003). Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical and Applied Genetics, 107(5), 864-874. doi:10.1007/s00122-003-1277-1Van der Knaap, E., & Tanksley, S. D. (2003). The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theoretical and Applied Genetics, 107(1), 139-147. doi:10.1007/s00122-003-1224-1E., F., Y., L., L., C.-G., A., G., M., S., T., P., … D., Z. (2002). Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Molecular Genetics and Genomics, 266(5), 821-826. doi:10.1007/s00438-001-0599-4Van der Knaap, E., Lippman, Z. B., & Tanksley, S. D. (2002). Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics, 104(2), 241-247. doi:10.1007/s00122-001-0776-

    Effect of cognitive-behavioral therapy combined with exercise training in adolescent girls with elevated depression symptoms: a randomized controlled clinical trial

    Get PDF
    Objective: To investigate the effects of cognitive-behavioral therapy (CBT) combined with regular versus intermittent exercise on depression and quality of sleep-in adolescent girls. Participants and Methods: Sixty adolescent girls aged 12-17 years with mild to moderate depression were equally distributed to three groups, each group 20 patients. Group A received weekly 60-minutes CBT session combined with regular exercise 60 minutes three times per week for 12 weeks; Group B received weekly 60-minutes CBT plus intermittent exercise 60-minutes exercise once per week for 12 weeks and Group C received weekly 60-minute CBT alone for 12 weeks. Participants' depressive symptoms were evaluated before and after the 12-week interventions using the Center for Epidemiologic Studies Depression Scale (CES-D), sleep quality was evaluated before and after 12-week interventions using Pittsburgh Sleep Quality Index (PSQI). Results: After 12-week interventions, group A showed significantly lower reductions in CES-D depressive symptoms scores compared to group B and group C. Sleep quality improved significantly in all three groups, with group A experiencing the greatest increase. The comparison between groups B and C yielded no significant results. The intragroup statistical evaluation showed no significant difference between the groups. Conclusion: Among depressed adolescent girls, regular triweekly exercise combined with CBT led to significantly greater decreases in depressive symptoms and improved quality of sleep than intermittent once weekly exercise plus CBT or CBT alone. These findings indicate that exercise frequency may be key in potentiating the antidepressant benefits of CBT

    Surgical site infection after gastrointestinal surgery in children: An international, multicentre, prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings. Methods A multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI). Results Of 1159 children across 181 hospitals in 51 countries, 523 (45·1%) children were from high HDI, 397 (34·2%) from middle HDI and 239 (20·6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12·8% (51/397) in middle HDI and 24·7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI. Conclusion The odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda. (Globalsurg Collaborative

    Microarray gene expression profiling and analysis in renal cell carcinoma

    Get PDF
    BACKGROUND: Renal cell carcinoma (RCC) is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. METHODS: Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. RESULTS: Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR). Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. CONCLUSIONS: This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most notably, genes involved in cell adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated. This study reveals significant gene expression alterations in key biological pathways and provides potential insights into understanding the molecular mechanism of renal cell carcinogenesis
    corecore