41 research outputs found
Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array--Low Frequency Demonstrator
Experiments were performed with prototype antenna tiles for the Mileura
Widefield Array--Low Frequency Demonstrator (MWA-LFD) to better understand the
widefield, wideband properties of their design and to characterize the radio
frequency interference (RFI) between 80 and 300 MHz at the site in Western
Australia. Observations acquired during the six month deployment confirmed the
predicted sensitivity of the antennas, sky-noise dominated system temperatures,
and phase-coherent interferometric measurements. The radio spectrum is
remarkably free of strong terrestrial signals, with the exception of two narrow
frequency bands allocated to satellite downlinks and rare bursts due to
ground-based transmissions being scattered from aircraft and meteor trails.
Results indicate the potential of the MWA-LFD to make significant achievements
in its three key science objectives: epoch of reionziation science,
heliospheric science, and radio transient detection.Comment: Accepted by AJ. 17 pages with figure
Interaction testing and polygenic risk scoring to estimate the association of common genetic variants with treatment resistance in schizophrenia
Importance About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts.
Objective To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples.
Design, Setting, and Participants Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n=10 501) and individuals with non-TRS (n=20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]).
Main Outcomes and Measures GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition.
Results The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r² = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r² = 1.09%; P = .04).
Conclusions and Relevance In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.Funding/Support: This work was supported by Medical Research Council Centre grant MR/ L010305/1, Medical Research Council Program grant MR/P005748/1, and Medical Research Council Project grants MR/L011794/1 and MC_PC_17212 to Cardiff University and by the National Centre for Mental Health, funded by the Welsh Government through Health and Care Research Wales. This work acknowledges the support of the Supercomputing Wales project, which is partially funded by the European Regional Development Fund via the Welsh Government. Dr Pardiñas was supported by an Academy of Medical Sciences Springboard Award (SBF005\1083). Dr Andreassen was supported by the Research Council of Norway (grants 283798, 262656, 248980, 273291, 248828, 248778, and 223273); KG Jebsen Stiftelsen, South-East Norway Health Authority, and the European Union’s Horizon 2020 Research and Innovation Programme (grant 847776). Dr Ajnakina was supported by an National Institute for Health Research postdoctoral fellowship (PDF-2018-11-ST2-020). Dr Joyce was supported by the University College London Hospitals/UCL University College London Biomedical Research Centre. Dr Kowalec received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement (793530) from the government of Canada Banting postdoctoral fellowship programme and the University of Manitoba. Dr Sullivan was supported by the Swedish Research Council (Vetenskapsrådet, D0886501), the European Union’s Horizon 2020 programme (COSYN, 610307) and the US National Institute of Mental Health (U01 MH109528 and R01 MH077139). The Psychiatric Genomics Consortium was partly supported by the National Institute Of Mental Health (grants R01MH124873). The Sweden Schizophrenia Study was supported by the National Institute Of Mental Health (grant R01MH077139). The STRATA consortium was supported by a Stratified Medicine Programme grant to Dr MacCabe from the Medical Research Council (grant MR/L011794/1), which funded the research and supported Drs Pardiñas, Smart, Kassoumeri, Murray, Walters, and MacCabe. Dr Smart was supported by a Collaboration for Leadership in Applied Health Research and Care South London at King’s College Hospital National Health Service Foundation Trust. The AESOP (US) cohort was funded by the UK Medical Research Council (grant G0500817). The Belfast (UK) cohort was funded by the Research and Development Office of Northern Ireland. The Bologna (Italy) cohort was funded by the European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Genetics and Psychosis project (London, UK) cohort was funded by the UK National Institute of Health Research Specialist Biomedical Research Centre for Mental Health, South London and the Maudsley National Health Service Mental Health Foundation Trust (SLAM) and the Institute of Psychiatry, Psychology, and Neuroscience at King’s College London; Psychiatry Research Trust; Maudsley Charity Research Fund; and the European Community’s Seventh Framework program (HEALTH-F2-2009-241909, project EU-GEI). The Lausanne (Switzerland) cohort was funded by the Swiss National Science Foundation (grants 320030_135736/1, 320030-120686, 324730-144064, 320030-173211, and 171804); the National Center of Competence in Research Synaptic Bases of Mental Diseases from the Swiss National Science Foundation (grant 51AU40_125759); and Fondation Alamaya. The Oslo (Norway) cohort was funded by the Research Council of Norway (grant 223273/F50, under the Centers of Excellence funding scheme, 300309, 283798) and the South-Eastern Norway Regional Health Authority (grants 2006233, 2006258, 2011085, 2014102, 2015088, and 2017-112). The Paris (France) cohort was funded by European Community’s Seventh Framework program (HEALTH-F2-2010–241909, project EU-GEI). The Prague (Czech Republic) cohort was funded by the Ministry of Health of the Czech Republic (grant NU20-04-00393). The Santander (Spain) cohort was funded by the following grants to Dr Crespo-Facorro: Instituto de Salud Carlos III (grants FIS00/3095, PI020499, PI050427, and PI060507), Plan Nacional de Drogas Research (grant 2005-Orden sco/3246/2004), SENY Fundatio Research (grant 2005-0308007), Fundacion Marques de Valdecilla (grant A/02/07, API07/011) and Ministry of Economy and Competitiveness and the European Fund for Regional Development (grants SAF2016-76046-R and SAF2013-46292-R). The West London (UK) cohort was funded by The Wellcome Trust (grants 042025, 052247, and 064607)
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions
While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk
Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes
publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc
Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants with Treatment Resistance in Schizophrenia
Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10501) and individuals with non-TRS (n = 20325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85490 participants (48635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P =.001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P =.04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance
Screening uptake rates and the clinical and cost effectiveness of screening for gestational diabetes mellitus in primary versus secondary care: study protocol for a randomised controlled trial
Background: The risks associated with gestational diabetes mellitus (GDM) are well recognized, and there is increasing evidence to support treatment of the condition. However, clear guidance on the ideal approach to screening for GDM is lacking. Professional groups continue to debate whether selective screening (based on risk factors) or universal screening is the most appropriate approach. Additionally, there is ongoing debate about what levels of glucose abnormalities during pregnancy respond best to treatment and which maternal and neonatal outcomes benefit most from treatment. Furthermore, the implications of possible screening options on health care costs are not well established. In response to this uncertainty there have been repeated calls for well-designed, randomised trials to determine the efficacy of screening, diagnosis, and management plans for GDM. We describe a randomised controlled trial to investigate screening uptake rates and the clinical and cost effectiveness of screening in primary versus secondary care settings.
Methods/Design: This will be an unblinded, two-group, parallel randomised controlled trial (RCT). The target population includes 784 women presenting for their first antenatal visit at 12 to 18 weeks gestation at two hospitals in the west of Ireland: Galway University Hospital and Mayo General Hospital. Participants will be offered universal screening for GDM at 24 to 28 weeks gestation in either primary care (n = 392) or secondary care (n = 392) locations. The primary outcome variable is the uptake rate of screening. Secondary outcomes include indicators of clinical effectiveness of screening at each screening site (primary and secondary) including gestational week at time of screening, time to access antenatal diabetes services for women diagnosed with GDM, and pregnancy and neonatal outcomes for women with GDM. In addition, parallel economic and qualitative evaluations will be conducted. The trial will cover the period from the woman\u27s first hospital antenatal visit at 12 to 18 weeks gestation, until the completion of the pregnancy