271 research outputs found

    University students’ classroom emotional climate and attitudes during and after COVID-19 lockdown

    Get PDF
    With the advent of COVID-19, universities around the world have been forced to move to a fully online mode of delivery because of lockdown policies. This led to a flurry of studies into issues such as internet access, student attitudes to online learning and mental health during lockdown. However, researchers need a validated survey for assessing the classroom emotional climate and student attitudes towards learning in universities that can be used for online, face-to-face or blended delivery. Such a survey could be used to illuminate students’ perceptions of the experiences that make up learning at university level, in terms of such factors as care from teachers, collaboration and motivation. In this article, we report the validation of a University Classroom Emotional Climate (UCEC) questionnaire and an Attitudes to Learning scale, as well as their use in comparing the classroom emotional climate and attitudes during COVID-19 lockdown (fully online delivery) with post-lockdown (mixed-mode delivery). Female students experienced the post-lockdown condition significantly more positively than during lockdown for all scales except Care, while the only significant difference for males between the during and post-lockdown was their choice to engage with learning (Control) and the degree of Challenge that they found with the learning materials

    Dependence of EMIC wave parameters during quiet, geomagnetic storm, and geomagnetic storm phase times

    Get PDF
    As electromagnetic ion cyclotron (EMIC) waves may play an important role in radiation belt dynamics, there has been a push to better include them into global simulations. How to best include EMIC wave effects is still an open question. Recently many studies have attempted to parameterize EMIC waves and their characteristics by geomagnetic indices. However, this does not fully take into account important physics related to the phase of a geomagnetic storm. In this paper we first consider how EMIC wave occurrence varies with the phase of a geomagnetic storm and the SYM-H, AE, and Kp indices. We show that the storm phase plays an important role in the occurrence probability of EMIC waves. The occurrence rates for a given value of a geomagnetic index change based on the geomagnetic condition. In this study we also describe the typical plasma and wave parameters observed in L and magnetic local time for quiet, storm, and storm phase. These results are given in a tabular format in the supporting information so that more accurate statistics of EMIC wave parameters can be incorporated into modeling efforts

    OSSOS. V. Diffusion in the Orbit of a High-perihelion Distant Solar System Object

    Get PDF
    We report the discovery of the minor planet 2013 SY99_{99}, on an exceptionally distant, highly eccentric orbit. With a perihelion of 50.0 au, 2013 SY99_{99}'s orbit has a semi-major axis of 730±40730 \pm 40 au, the largest known for a high-perihelion trans-Neptunian object (TNO), well beyond those of (90377) Sedna and 2012 VP113_{113}. Yet, with an aphelion of 1420±901420 \pm 90 au, 2013 SY99_{99}'s orbit is interior to the region influenced by Galactic tides. Such TNOs are not thought to be produced in the current known planetary architecture of the Solar System, and they have informed the recent debate on the existence of a distant giant planet. Photometry from the Canada-France-Hawaii Telescope, Gemini North and Subaru indicate 2013 SY99_{99} is ∼250\sim 250 km in diameter and moderately red in colour, similar to other dynamically excited TNOs. Our dynamical simulations show that Neptune's weak influence during 2013 SY99_{99}'s perihelia encounters drives diffusion in its semi-major axis of hundreds of astronomical units over 4 Gyr. The overall symmetry of random walks in semi-major axis allow diffusion to populate 2013 SY99_{99}'s orbital parameter space from the 1000-2000 au inner fringe of the Oort cloud. Diffusion affects other known TNOs on orbits with perihelia of 45 to 49 au and semi-major axes beyond 250 au, providing a formation mechanism that implies an extended population, gently cycling into and returning from the inner fringe of the Oort cloud.Comment: First reviewer report comments incorporated. Comments welcom

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Magnetic Coordinate Systems

    Get PDF
    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly

    Learners' perceptions of their successes and failures in foreign language learning

    Get PDF
    This is a postprint of an article whose final and definitive form has been published in the Language Learning Journal © 2004 Copyright Taylor & Francis; Language Learning Journal is available online at http://www.informaworld.comResearch into learners’ attributions for their successes and failures has received considerable attention. However very little has been carried out in the area of learning foreign languages. This study is timely in view of the current interest by the government in promoting foreign languages. The aims of the study were (1) to investigate secondary students’ attributions for their success and failures in learning foreign languages (2) to examine the ways in which these vary according to age, gender, perceived success and specific language studied. The sample consisted of 285 students between the ages of 11 and 16 studying French, German and Spanish in five secondary schools in the UK. A simple open questionnaire was administered by language teachers, consisting of a personal evaluation by students of their perceived level of success as learners of specific foreign languages and their attributions for success and failure in those domains. The resulting responses were analysed by means of a grounded theory approach allowing categories to emerge from the data. The resultant categories were then tabulated according to student age, gender, and language learnt, together with level of perceived success. Over one thousand attributional statements gave rise to 21 attributional categories for doing well and 16 categories for not doing well at language learning. A far wider range of attributions were identified than is generally shown in the research literature, six of which were most commonly called upon as reasons for both success and failure. Clear differences emerged between boys and girls, year groups, perceived success and language studied. These results and, in particular, the lack of clarity in the learners’ comments about strategy use and the lack of focus on metacognitive strategies, have important implications for policy makers and for teachers of foreign languages in UK schools. In addition there are important implications for future research in this area

    Sediment routing and basin evolution in Proterozoic to Mesozoic east Gondwana: A case study from southern Australia

    Get PDF
    Sedimentary rocks along the southern margin of Australia host an important record of the break-up history of east Gondwana, as well as fragments of a deeper geological history, which collectively help inform the geological evolution of a vast and largely underexplored region. New drilling through Cenozoic cover has allowed examination of the Cretaceous rift-related Madura Shelf sequence (Bight Basin), and identification of two new stratigraphic units beneath the shelf; the possibly Proterozoic Shanes Dam Conglomerate and the interpreted Palaeozoic southern Officer Basin unit, the Decoration Sandstone. Recognition of these new units indicates an earlier basinal history than previously known. Lithostratigraphy of the new drillcore has been integrated with that published from onshore and offshore cores to present isopach maps of sedimentary cover on the Madura Shelf. New palynological data demonstrate progression from more localised freshwater-brackish fluvio-lacustrine clastics in the early Cretaceous (Foraminisporis wonthaggiensis – Valanginian to Barremian) to widespread topography-blanketing, fully marine, glauconitic mudrocks in the mid Cretaceous (Endoceratium ludbrookiae – Albian). Geochronology and Hf-isotope geochemistry show detrital zircon populations from the Madura Shelf are comparable to those from the southern Officer Basin, as well as Cenozoic shoreline and palaeovalley sediments in the region. The detrital zircon population from the Shanes Dam Conglomerate is defined by a unimodal ~1400 Ma peak, which correlates with directly underlying crystalline basement of the Madura Province. Peak ages of ~1150 Ma and ~1650 Ma dominate the age spectra of all other samples, indicating a stable sediment reservoir through much of the Phanerozoic, with sediments largely sourced from the Albany-Fraser Orogen and Musgrave Province (directly and via multiple recycling events). The Madura Shelf detrital zircon population differs from published data for the Upper CretaceousCeduna Delta to the east, indicating significant differences in sediment provenance and routing between the Ceduna Sub-basin and central Bight Basin
    • …
    corecore